
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1984

Application of modulated hydrodynamic
voltammetry to the study of anodic electrocatalysis
Deborah S. Austin
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Analytical Chemistry Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Austin, Deborah S., "Application of modulated hydrodynamic voltammetry to the study of anodic electrocatalysis " (1984).
Retrospective Theses and Dissertations. 7811.
https://lib.dr.iastate.edu/rtd/7811

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F7811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F7811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F7811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F7811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F7811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F7811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/132?utm_source=lib.dr.iastate.edu%2Frtd%2F7811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/7811?utm_source=lib.dr.iastate.edu%2Frtd%2F7811&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This reproduction was made from a copy of a document sent to us for microfilming. 
While the most advanced technology has been used to photograph and reproduce 
this document, the quality of the reproduction is heavily dependent upon the 
quality of the material submitted. 

The following explanation of techniques is provided to help clarify markings or 
notations which may appear on this reproduction. 

1.The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. This 
may have necessitated cutting through an image and duplicating adjacent pages 
to assure complete continuity. 

2. When an image on the film is obliterated with a round black mark, it is an 
indication of either blurred copy because of movement during exposure, 
duplicate copy, or copyrighted materials that should not have been filmed. For 
blurred pages, a good image of the page can be found in the adjacent frame. If 
copyrighted materials were deleted, a target note will appear listing the pages in 
the adjacent frame. 

3. When a map, drawing or chart, etc., is part of the material being photographed, 
a definite method of "sectioning" the material has been followed. It is 
customary to begin filming at the upper left hand comer of a large sheet and to 
continue from left to right in equal sections with small overlaps. If necessary, 
sectioning is continued again—beginning below the first row and continuing on 
until complete. 

4. For illustrations that cannot be satisfactorily reproduced by xerographic 
means, photographic prints can be purchased at additional cost and inserted 
into your xerographic copy. These prints are available upon request from the 
Dissertations Customer Services Department. 

5. Some pages in any document may have indistinct print. In all cases the best 
available copy has been filmed. 

UniversiV 
Micrixilms 

International 
300 N. Zeeb Road 
Ann Arbor, Ml 48106 



www.manaraa.com



www.manaraa.com

8505800 

Austin, Deborah S. 

APPLICATION OF MODULATED HYDRODYNAMIC VOLTAMMETRY TO THE 
STUDY OF ANODIC ELECTROCATALYSIS 

Iowa State University PH.D. 1984 

University 

Microfilms 

I nt6rnâtiO n si 300 N. Zeeb Road, Ann Arbor, Ml 48106 



www.manaraa.com



www.manaraa.com

Application of modulated hydrodynamic voltammetry 

to the study of anodic electrocatalysis 

by 

Deborah S. Austin 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Chemistry 
Major: Analytical Chemistry 

Approved: 

In Charge of m^r Work 

Iowa State University 
Ames, Iowa 

1984 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

i i  

TABLE OF CONTENTS 

Page 

DEDICATION viii 

I. INTRODUCTION 1 

II. LITERATURE REVIEW 3 

A. Anodic Electrocatalysis and the Role of Surface 
Oxides in Oxygen-transfer Reactions 3 

B. Hydrodynamically Modulated Voltammetry 12 

III. EXPERIMENTAL 15 

A. Chemicals 15 

B. Instrumentation 15 

1. Voltammetric studies 15 
a. Electrodes 15 
b. Rotators 16 
c. Potentiostats 16 
d. Computer system 16 
e. Miscellaneous 17 

2. Flow injection system 17 

IV. SQUARE-WAVE HYDRODYNAMICALLY MODULATED VOLTAMMETRY 21 

A. Theory 22 

B. Experimental Procedure 22 

1. Staircase potential waveform 22 

2. Triple-step potential waveform 25 

C. Optimization of Parameters 25 

V. SURVEY OF ANODIC REACTIONS USING CYCLIC VOLTAMMETRY 
AND SQUARE-WAVE HYDRODYNAMICALLY MODULATED VOLTAMMETRY 31 

A. Introduction 31 

B. Residual Curves 32 

C. Anodic Reactions 43 



www.manaraa.com

i i i  

1. Arsenic(III) 43 

2. Nitrite 52 

3. Iodide 59 

4. Chloride 73 

5. Bromide 83 

6. Hydroquinone 95 

D. Summary 105 

VI. THE ANODIC OXIDATION OF IODIDE IN ACIDIC MEDIA AT A 
Pt ELECTRODE 109 

A. Literature Review 109 

B. Voltammetric Studies 115 

1. Cyclic Voltammetry 115 

2. Square-wave hydrodynamically modulated 
voltammetry 121 

a. Staircase potential waveform 124 
b. Triple-step potential waveform 127 

3. Summary 131 

C. Flow Injection Detection 134 

VII. THE REDUCTION OF lODATE 148 

A. Introduction 148 

B. Cyclic Voltammetry 150 

C. Square-wave Hydrodynamically Modulated Voltammetry 167 

VIII. CONCLUSIONS 173 

IX. FUTURE RESEARCH 175 

X. BIBLIOGRAPHY 176 

XI. ACKNOWLEDGEMENTS 186 

XII. APPENDIX 187 



www.manaraa.com

iv 

LIST OF FIGURES 

Page 

Figure III-l. Flow-through cell utilized for constant 
potential and multi-step potential 
amperometric detection 18 

Figure IV-1. Staircase potential waveform 24 

Figure IV-2. Triple-step potential waveform 25 

Figure V-1. I-E and AI-E curves of Pt in 0.5 M HgSO^ 33 

Figure V-2. I-E and AI-E curves of Pd in 0.5 M HgSO^ 35 

Figure V-3. I-E and AI-E curves of Au in 0.5 M HGSO^ 37 

Figure V-4. I-E and AI-E curves of Ir in 5.0 M HgSO^ 39 

Figure V-5. I-E and AI-E curves of 0.5 mM As(III) in 
0.5 M HgSO^ at a Pt RDE 45 

Figure V-6. I-E and AI-E curves of 0.5 mM As(III) in 
0.5 M HgSOg at a Au RDE 49 

Figure V-7. I-E and AI-E curves of 0.5 mM NO." in 
0.5 M HgSO^ at a Pt RDE 53 

Figure V-8. I-E and AI-E curves of 0.5 mM NOp" in 
0.5 M HgSO^ at a Au RDE 55 

Figure V-9. I-E and AI-E curves of 0.5 mM I~ in 
0.5 M HgSO^ at a Au RDE 62 

Figure V-10. I-E and AL-E curves of 0.5 mM I" in 
5.0 M HgSO^ at an Ir RDE 66 

Figure V-11. I-E and Al-E curves of 0.5 mM I" in 
0.5 M HgSO^ at a Pd RDE 70 

Figure V-12. I-E and AI-E curves of 0.5 mM CI" in 
0.5 M HgSO^ at a Pt RDE 76 

Figure V-13. I-E and AL-E curves of 0.5 mM Cl~ in 
0.5 M HgSO^ at a Au RDE 81 

Figure V-14. I-E and AI-E curves of 0.5 mM Br" in 
0.5 M HgSO^ at a Pt RDE 85 



www.manaraa.com

V  

Figure V-15. I-E and AI-E curves of 0.5 mM Br" in 
0.5 M HgSO^ at a Au RDE 87 

Figure V-16. I-E and AI-E curves of 0.5 mM hydroquinone 
in 0.5 M HgSO^ at a Pt RDE 98 

Figure V-17. I-E and AI-E curves of 0.5 mM hydroquinone 
in 0.5 M HgSO^ at a Au RDE 102 

Figure VI-1. I-E curves of I" in 0.5 M HgSO^ at a Pt RDE 

as a function of I" concentration 112 

Figure VI-2. I-E curve of 0.5 mM I" in 0.5 M HUSO, at a 
Pt RDE ^ ^ 116 

Figure VI-3. I-E curves of 0.5 mM I" in 0.5 M HUSO, at a 
Pt RDE as a function of E, 119 

Figure VI-4. I-E curves of 0.5 mM I" in 0.5 M HUSO, at a 
Pt RDE as a function of E, 122 

Figure VI-5. AI-E curve of 0.5 mM I' in 0.5 M HUSO, at a 
Pt RDE ^ ^ 125 

Figure VI-6. Al-Eg curve of 0.5 mM I" in 0.5 M HgSO^ at a 

Pt RDE utilizing the triple-step potential 
waveform illustre ted in Figure IV-2 129 

Figure VI-7. Plots of AL vs. tg as a function of Eg for 

0.5 mM r in 0.5 M HgSO^ at a Pt RDE 132 

Figure VI-8. Expected anodic response following a positive 
potential step into a region where a transport-
limited reaction is occurring 136 

Figure VI-9. Expected anodic response following a positive 
potential step into a region where oxide 
formation occurs. 137 

Figure VI-10. Expected anodic response following a positive 
potential step into a region where oxide 
formation occurs 138 

Figure VI-11. Expected anodic response following a positive 
potential step into a region where oxide 
formation occurs 139 



www.manaraa.com

vi 

Figure VI-12, Flow injection peaks for 100 uM I~ in 
0.5 M HgSO^ at a Pt wire electrode 

Figure VI-13. Peak height vs. t^^^ for triple-step 

amperometric detection of 100 liM I" in 
0.5 M HgSOg at a Pt wire electrode 

Figure VII-l. I-E curves of Pt in 0.5 M H-SO, as a 
function of E^ 

Figure VII-2. I-E curve of 4 X 10"^ M ICL" in 0.5 M HUSO, 
at a Pt RDE 

Figure VII-3. I-E curves of 4 X 10"^ M 10^ in 0.5 M HgSO^ 

at a Pt RDE as a function of E^ 

Figure VII-4. Theoretical I^-E^ and I^-Ey behavior 

Figure VII-5. Theoretical I^-E^ and I^-EJ behavior 

Ip-Ej curve of ̂  

at a Pt/Pt RRDE 

Figure VII-7. AI-E curve of 4 X 10"^ M lOg in 0.5 M HgSO^ 

at a Pt RDE 

Figure VII-8. AI-E curves of 4 X 10 ^ M LOG in 0.5 M HGSO 

at a Pt RDE as a function of E^ 

Figure VII-6. I^-E^ curve of 4 X 10"^ M lOg in 0.5 M HgSO 



www.manaraa.com

VI 1 

LIST OF TABLES 

Page 

Table II-l. Evidence of electrocatalysis by surface oxide 5 

Table III-l. Pine Instrument's electrode utilized for the 
study of anodic electrocatalysis 15 

Table IV-1. Time response of the MSR to a voltage step 28 

Table V-1. Practical anodic potential limits for CV and 
QHMV 41 

Table V-2. Mass-transport dependent reactions observed 
by QHMV simultaneously with O2 evolution 106 

Table V-3. General trends of electrocatalysis observed 
for mass-transport coupled reactions 107 

Table V-4. Mass-transport dependent reactions observed 
by QHMV occurring simultaneously with 0? 
evolution at a Pt electrode 108 

Table VI-1. Multi-step potential waveforms utilized for 
the amperometric detection of I" at a Pt 
electrode 140 



www.manaraa.com

viii 

DEDICATION 

In memory of my grandfather-R. H. Engle 

who inspired me to explore the wonders of science. 



www.manaraa.com

1 

I. INTRODUCTION 

The development of new electroanalytical techniques evolves from the 

limitations of existing techniques. The progression of polarographic 

techniques from conventional dc polarography to normal pulse polarography 

to differential pulse polarography is a prime example. With each advance, 

the interference from charging current, which flows as the electrode area 

increases, was minimized further. Although Hg has an excellent cathodic 

potential range, the anodic potential range is limited by dissolution of 

Hg. Solid electrodes, ̂ .£., Pt and Au, have wide anodic potential ranges. 

Therefore, voltammetric techniques utilizing solid electrodes were 

introduced, but their use is not without inherent limitations. Double-

layer charging and oxidation/reduction of the surface atoms result from 

changes in the applied electrode potential. Surface reactions, such as 

the anodic formation and cathodic dissolution of oxide, cause substantial 

current to flow which often obscures the analytical signal of interest. 

Hydrodynamically modulated voltammetry was developed to overcome these 

limitations by effectively isolating the signal of interest, i_.e^., the 

mass-transport coupled component of the total signal, from the background 

current components. 

Although background currents produced by the oxidation of the metal 

surface are viewed as an interference when attempting to measure the mass-

transport coupled current by conventional cyclic voltammetry, surface 

oxides in the early stage of formation have been found to catalyze many 

anodic reactions. However, as growth of the oxide film proceeds, loss 

of catalytic activity is observed. A catalytically active surface can 
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be continually regenerated by modulating the applied electrode potential. 

Simultaneous modulation of the electrode potential and the rotational 

velocity allows one to investigate the effect that the potential-dependent 

surface state has on anodic reactions which are coupled to the mass-

transport of the analyte from the bulk solution. 

The objectives of this research project included the development of 

the software necessary for modulated hydrodynamic voltammetric techniques 

and their application to the study of surface-catalyzed reactions. Based 

on preliminary results, the oxidation of I" in acidic media at a Pt 

electrode was chosen to be studied in further detail. 
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II. LITERATURE REVIEW 

A. Anodic Electrocatalysis and the Role of Surface Oxides 

in Oxygen-transfer Reactions 

Electrochemical reactions are influenced markedly by the applied 

electrode potential. The potential-dependent rate constant (k) for 

electrochemical reactions is given by the equation (1) 

k = k°exp{-anFE/RT} 

where k° is the standard rate constant, a is the transfer coefficient, 

n is the number of electrons, F is the Faraday constant, E is potential, 

R is the gas constant, and T is temperature. Also significant in 

electrochemical reactions are the choice of electrode material and the 

properties of the electrode surface, i^.e^., surface morphology and the 

presence of oxides. Electrochemical reactions can be catalyzed, thus, 

the term electrocatalysis was coined. Appleby (2) defined electro-

catalysis as "the study of heterogeneous catalytic reactions that 

involve reactant and product species transferring electrons through an 

electrolyte-catalyst interface". Electrocatalytic effects were reported 

first in the literature in 1928 by Bowden and Rideal (3). They observed, 

for reactions such as the deposition of H, differences in the exchange 

current density for different electrodes at the same potential. 

"Presently, interest in electrocatalysis is in the area of energy conver­

sion devices. Electrocatalyzed reactions directly convert combustion 

energy into electricity. The major objective is to develop a system 
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which produces the maximum reaction rates at potentials close to the 

reversible potential, thereby minimizing cost. 

The catalytic participation of surface oxygen at a Pt electrode 

in electro-oxidative processes was implicated by Russian scientists in 

the early 1950's (4-6). In the early to mid-1960s, surface oxides on 

noble metal electrodes were demonstrated to affect the mechanism of a 

reaction in addition to the kinetics of the reaction (7-10). Numerous 

examples of anodic oxidation of inorganic compounds are cited in Table 

II-l in which the involvement of surface oxides at metal electrodes has 

been suggested. Note that the oxidation products of the species listed 

in Table II-l have a greater oxygen content than the reactant species, 

, HgAsOg—^HgAsO^, r ^lOg", and SO^^"—>S0^^", thereby 

inferring that the electrode serves as an 0-transfer catalyst. Since 

the involvement of surface oxides is apparently an integral part of the 

electrocatalytic process, the formation of oxides on noble metal 

electrodes, in particular Pt, merits discussion. 

An excellent survey of literature pertaining to the formation of 

oxides on noble metal electrodes prior to 1965 was preser :ed by Gilman 

(46). Recent reviews of literature were reported by Belanger and Vijh 

(47) and Cabalka (48). The evolution of O2 at noble metal electrodes 

was reviewed by Hoare (49). The intention of this discussion is to 

summarize those conclusions most widely accepted among present-day 

-researchers. 

Angerstein-Kozlowska et (50), Conway and Gottesfeld (51), and 

Tilak et al. (52) have studied extensively the formation of surface 
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Table II-l. Evidence of electrocatalysis by surface oxide 

Electrode Reactant Reference 

Pt r 11-19 

Br" 20 

Mn(II) 21, 22 

As(III) 23-25 

SOg 4, 5, 26-29 

NOg" 4, 5, 30 

CD 31-37 

S^"(HS") 38 

SOgZ- 4, 30 

U(IV) 6 

Au S^"(HS") 39, 40 

As(III) 41 

NOg" 42, 43 

Pd SOg 44 

Rh CO 45 
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oxides on Pt in acidic solutions. They concluded that the initial step 

involves the production of adsorbed OH radicals by the reaction 

H2O ^ "OH + H^ + e . 

They also demonstrated that the formation of the equivalent of a mono­

layer of lower surface oxide occurs in a stepwise manner: the anodic 

wave can be deconvoluted into three peaks corresponding to oxides with 

surface stoichiometry of Pt^OH (ça. 0.89 V vs. NHE), PtgOH (ca. 0.95 V 

vs. NHE), and PtOH (ca. 1.05 V vs. NHE). The "lower oxide" will be 

designated as "PtOH". The initial PtOH produced with low surface 

coverage can be reduced by a nearly reversible cathodic process. The 

reversible PtOH has only transient existence; however, with time, as 

well as a result of local potential fields, the adsorbed OH radicals 

and Pt atoms undergo place-exchange to produce "OHPt" which is more 

stable than PtOH. The reduction of this oxide species occurs at a more 

negative reduction potential. For E > l.O V in acidic media, a mono­

layer of adsorbed OH is formed rapidly with subsequent conversion by 

oxidation to the "higher oxide" designated as "PtO". Place-exchange 

also occurs with the PtO species to form "OPt". 

Angerstein-Kozlowska et (53) also investigated the effect of 

adsorbed ions on the initial stage of oxide formation. As a result of 

competition between the ions and the OH radicals for adsorption sites 

on the electrode surface, the potential at which oxide formation 

commences is shifted to more positive values. Adsorbed ions also 

facilitate place-exchange between Pt atoms and adsorbed OH, thereby 
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decreasing the number of OH species available on the surface for 

reaction with the analyte. As mentioned previously, place-exchange is 

promoted at higher potential values. Therefore, the combination of 

adsorbed ions and higher potential values contribute to the shortening 

of the potential range over which PtOH exists for a significant period 

of time. 

The electrochemical evolution of Og at Pt anodes has been 

investigated by several researchers (54-57). Damjanovic and Jovanovic 

(54) proposed that the process involves the direct participation of 

0-atoms in the oxide film. The participation of the surface oxygen is 

supported by the work of Rozental and Veselovskii (55) and Churchill 

and Hibbert (56) using a tracer technique. The Pt surface oxide was 

18 
formed by anodic polarization in an 0-enriched aqueous solution 

followed by the evolution of Og from the enriched oxide surface in an 

unlabeled aqueous solution. The initial gas evolved was rich in the ' 

dimer ^®0-^^0 resulting in the progressive depletion of from the 

surface oxide. Damjanovic and Jovanovic (54) postulated that the 

evolution of Og proceeds according to the scheme: 

1 I 
— 0 — Pt 

- Pt - 0 + OH 

- i - 4  
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- 0 - Pt 
I % ^ 

- Pt ••••••0~~0 + H 
I /' 

- 0 - Pt 

— 0 — Pt 

-'K: 
- 0 - Pt 

+ O2 + e + H 

The first step in the mechanism involves the generation of OH radicals 

on the PtO surface. When Og molecules leave the surface of the 

electrode, the oxide must be reformed which involves OH radicals as an 

intermediate product: 

- j - p i  

+ HpO ^ - Pt ••••/•OH + + e" 
^ I .• 

- 0 - Pt 

- 0 - Pt 

-pi-;' 

- 0 -"pt 

- 0 - Pt 

- Pt - 0 + H"^ + e" 

- i - p i  
I I 

The apparent abundance of OH radicals present on the electrode surface 

during Og evolution and the fact that catalysis is observed in the 

presence of the lower oxide , PtOH) causes one to suspect that Og 

evolution may also exhibit an electrocatalytic effect on many anodic 
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reactions. 

The potential for onset of surface oxidation at a Au electrode 

has been widely disputed. Hoare (58), using double-layer capacitance 

measurements, first observed the possible existence of adsorbed oxygen 

at E < 1.06 V vs. SCE which greatly influences the electrochemical 

properties of the electrode. For example, the electro-oxidation of 

organic molecules presumably requires a surface oxygen loosely bound to 

the metal substrate. Maximum oxidation rates for olefins at Au 

electrodes are observed in the region 0.95 V < E < 1.1 V (59). Other 

researchers (60-63) maintain that no Au oxidation occurs until E > 1.06 

V, and they attribute the change in capacitance at E < 1.06 V to 

impurities in the electrode material or in the electrolyte solution. 

Results of recent studies utilizing ellipsometry (59, 64), reflectance 

spectroscopy (59, 64, 65), and a photochemical method (66, 67) support 

the existence of adsorbed oxygen, presumably as AuOH, at E < 1.06 V as 

proposed by Hoare (58). The onset of AuO formation occurs at E > 1.06 

V with monolayer coverage attained at ca. 1.2 V. For E > 1.2 V, further 

oxidation of the surface occurs producing AugOg up to ca^. 1 nm in 

thickness. Application of E > 1.8 V leads to the formation of a 

highly-hydrated, highly-colored (reddish brown), surface layer with the 

dominant species being Au(0H)2 (68). The latter two oxides differ in 

electronic and ionic conductivity; AUgOg is a semiconductor whereas 

Au(OH)2 is a conductor. 

Gold(III) oxide, loosely held on the electrode surface, flakes off 

exposing Au sites (69-71). Oxygen evolution and continued formation of 
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AugOg can occur at the exposed Au sites, both reactions involving 

intermediate production of an OH species (70-72). 

Literature pertaining to the anodic oxidation of Pd is limited 

(47, 69, 73-76). The stability and reactivity of surface oxides on Pd 

are highly dependent upon the electrode history. Palladium dissolution 

occurs at a freshly polished electrode during the initial scans of 

potential which results in roughening of the electrode surface hence, 

an increase in the real area of the electrode. However, after repeti­

tive potential cycling, surface roughening ceases, the electrode 

stabilizes, and activity toward oxygen adsorption increases. Palladium 

oxide formation occurs in a stepwise fashion during the positive scan 

of potential by a mechanism similar to oxide formation on Pt. Initially, 

a PdOH species is formed at E > 0.48 V, reaching monolayer coverage at 

ca. 0,7 V, followed by the formation of the more stable oxide PdO. With 

time, place-exchange of Pd and 0 occurs. Formation of PdOg begins at a 

potential corresponding to the evolution of O2 on Pd (ca. 1.2 V). 

Since PdOg is known to be unstable in acid, Hoare (77) proposed that Og 

evolution at a Pd electrode occurs by decomposition of PdOg in the 

reaction PdOg —> PdO + ^gOg. Hence, the anodic current observed is 

the result of regeneration of PdOg by the reaction PdO + HgO —> PdOg 

+ 2H"^ + 2e". 

The anodic behavior of an Ir electrode displays unique character-

"isties in comparison with that of other noble metal electrodes (46, 76, 

78). Voltammograms recorded in an electrolyte of 1 M HgSO^ are fairly 

symmetrical about the potential axis in the region of oxygen adsorption 
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and oxygen desorption indicating reversibility of the electrode reaction. 

A continual increase in the anodic oxide formation current and the 

cathodic oxide dissolution current is observed upon repetitive potential 

cycling owing to the buildup of oxide on the electrode surface. The 

extent of continuous oxide buildup decreases as the concentration of the 

acidic electrolyte solution increases. In 5 M HgSO^, current does not 

change significantly with continuous potential cycling; however, 

reversible behavior is not observed. Irreversibility of oxygen 

adsorption and oxygen desorption increases as the potential scan is 

reversed at more positive potential values. The surface oxidation of 

Ir occurs with initial formation of IrOH at E > 0.16 V, and further 

oxidation to IrO at E > 0.95 V. At E > 1.15 V, IrO is converted to IrOg. 

Initially, Og evolution takes place at a potential where a mixture of 

IrO and IrOg sites exist. A decrease in the anodic current for Og 

evolution occurs at ca^. 1.4 V as a result of a change in the properties 

of the metal ions in the anodic film. The existence of an IrO^ species 

has been observed at high potentials by Frazier and Woods (79), and Kim 

et al_. (68). The former authors speculated also that IrOg participates 

directly in the Og evolution reaction as represented by the equations: 

IrOg —^ IrOg + 0 

20 —>02 

The electrocatalytic activity of the oxide toward Og evolution depends 

upon the number of sites within the oxide that can react according to 

the above equations. Hence, the activity is proportional to the 
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quantity of IrOg. Gottesfeld and Srinivasen (80) reported that the 

rate of Og evolution is 5-10 times faster on a well-developed oxide 

layer than on a freshly polished electrode at which the oxide layer 

is not yet well-developed. 

B. Hydrodynamically Modulated Voltammetry 

Miller, Bellavance, and Bruckenstein (81) examined the feasibility 

of hydrodynamically modulated voltammetry at rotating disk electrodes 

based on the application of sine-wave and square-wave modulations about 

a nonzero, average rotational velocity. An important experimental 

advantage which resulted from the use of superimposed modulations on a 

steady speed was the ability to separate the convective-diffusion 

controlled component of the total current from background components, 

which result from surface processes and decomposition of the supporting 

electrolyte and are not influenced by variation in the rotational 

velocity. Subsequent investigations (82-87) have focused on the 

sinusoidal version of hydrodynamically modulated voltammetry (SHMV). 

The theoretical basis of the technique has been developed extensively. 

Although SHMV has been applied for the determination of heterogeneous 

kinetic parameters for quasi-reversible and irreversible systems and 

the determination of diffusion coefficients, major emphasis has been 

placed on application of SHMV for trace analysis. Recent advances in 

"SHMV include amplitude enhancement (88) and operation in the derivative 

mode (89). Both modifications were developed to increase the sensitivity 

of the extracted signal, thus extending the analytical applicability for 
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submicromolar electroanalysis. Miller and Bruckenstein (84) concluded 

that SHMV "... can frequently overcome severe complications arising 

from interfering discharge of supporting electrolyte and thereby 

extract serviceable voltammetric waves however, no specific 

examples have been reported which exploit this advantage. Blaedel and 

coworkers (90-92) investigated the square-wave version of hydrodynam-

ically modulated voltammetry, which they referred to as "pulsed rotation 

voltammetry". The determination of reaction rate constants and transfer 

coefficients, and application to trace analysis have been emphasized. 

In addition, Engstrom and Blaedel (93) recognized the advantages of 

automating the square-wave technique through use of small computers. 

The theory and application of hydrodynamically modulated voltammetric 

techniques have been reviewed by Wang (94). 

Both the sine-wave and square-wave versions of hydrodynamically 

modulated voltammetry are capable of extracting the convective-controlled 

faradaic signal from a total current dominated by surface-controlled 

processes, however, the interest in this research project focused on 

square-wave hydrodynamically modulated voltammetry (QHMV) under computer 

control. The choice to apply QHMV for the study of electrocatalysis was 

based on the following factors; 1) Instrumentation is simplified since 

no filtering device or lock-in amplifier is required. 2) The technique 

is automated easily with control of the experiment and data acquisition 

•provided by a small computer. 3) Under computer control and the use of 

a staircase potential waveform, the time necessary to complete an 

experiment is relatively short. 4) All instrumentation is commercially 
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available, allowing researchers to assemble the instrumentation quickly 

and focus their attention on the data produced. Furthermore, emphasis 

on application of QHMV in this project was shifted from a quantitative 

interest in trace analysis to a qualitative interest in the character­

ization of reactions under mixed surface and transport control. 

Application of hydrodynamically modulated voltammetry for micro- and 

submicromolar analysis has been given considerable attention, however, 

the technique will never compete successfully with other electro-

analytical techniques available for trace analysis. The complexity of 

real-life samples mandates the use of chromatography for separation of 

components thus eliminating the practicality of analysis in a batch 

cell which is required for rotational velocity modulations. Even though 

a pulsed-flow technique has been investigated (95), this detection 

system is not feasible in conjunction with chromatography. 

The ability to observe mass-transport controlled current occurring 

simultaneously with O2 evolution is by far the most salient feature of 

QHMV. There is a wealth of information available in a potential region 

previously inaccessible by conventional voltammetry. Anodic reactions 

once avoided due to the complexity of the anodic signal now can be 

studied. Future research with hydrodynamically modulated voltammetric 

techniques may provide further extension of the available potential 

range which is limited by dissolution of the electrode material, not 

the production of Og. 
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III. EXPERIMENTAL 

A. Chemicals 

All solutions were prepared from reagent grade chemicals and triply 

distilled water. The water was passed through an ion-exchange column 

following the first distillation, distilled from an alkaline permanganate 

solution (0.1 M KMnO^/O.l M KOH), and finally distilled from a 1 M HgSO^ 

solution. Dissolved Og was removed from all solutions by saturation with 

Ng. A blanket of Ng was maintained above the solution throughout 

experimentation. 

B. Instrumentation 

1. Voltammetric studies 

a. Electrodes The rotating disk and ring-disk electrodes (ROE 

and RRDE) (Pine Instrument Co., Grove City, PA) are listed in Table III-l. 

Table III-l. Pine Instrument's electrodes utilized for the study of 
anodic electrocatalysis 

Model Type Electrode Material Area (cm^) 

AFMD28 RDE Pt 0.166 

AFMD28 RDE Au 0.162 

AFMD19 RDE Pd 0.197 

AFDT06 RRDE Pt,Pt 0.459, 0.059 

AFMDI1980 RDE RuOg/TiOg^ 0.201 

® Anode material supplied by Dow Chemical Co. (Freeport, TX). 
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2 
An Ir electrode (0.496 cm ) was fabricated in the machine shop in the 

Department of Chemistry, Iowa State University. Prior to each use, the 

electrodes (except for RuOg/TiOg) were polished with 0.05 pm Buehler 

Alumina on microcloth then thoroughly rinsed with triply distilled water. 

b. Rotators The model PIR rotator (Pine Instrument Co.) was 

used with the AFDT06 electrode for ring-disk studies. This rotator had 

nine fixed speeds between 400 and 10,000 rpm. The rotator model MSR 

(Pine Instrument Co.) was used with the model AFMD electrodes and the Ir 

electrode. This rotator was a solid-state, servo-controlled system 

capable of rapid acceleration and deceleration. The speed could be set 

from 100 to 10,000 rpm within 1% accuracy. Acceleration from 1000 rpm 

to 4000 rpm occurred in 22 ms. An external analog signal applied to the 

input jack on the speed control box made possible the application of 

modulated waveforms. 

c. Potentiostats Potentiostatic control for application of 

triangular and staircase potential waveforms was achieved by the model 

RDE-3 potentiostat (Pine Instrument Co.). The faster potentiostatic 

response necessary for application of the triple-step potential waveform 

was achieved with a PAR-174A potentiostat (EG&G Princeton Applied 

Research Corp., Princeton, NJ). A miniature, saturated calomel electrode 

(SCE) served as the reference electrode and all potentials are reported 

as volts vs. SCE. 

d. Computer system External signals for control of rotational 

velocity and electrode potential were generated, and data were acquired, 

under computer control. The computer (model 6800, Southwest Technical 
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Products Corp., San Antonio, TX) was equipped with 32-K bytes of memory, 

four 12-bit digital/analog (D/A) converters, and eight multiplexed 12-bit 

analog/digital (A/D) converters. Peripheral devices included a Beehive 

International B-150 computer terminal (Salt Lake City, UT), a Centronics 

microprinter P-1 (Hudson, NH), and floppy disk storage. Programming was 

done in BASIC. Program listings are given in the Appendix. 

e. Miscellaneous Current-potential (I-E and Al-E) and current-

time (I-t) curves were recorded on a X-Y recorder (model 7035B, Hewlett 

Packard, San Diego, CA; or model Omnigraphic 100 Recorder, Houston 

Instruments, Bellaire, TX). An oscilloscope (model 122A, Hewlett Packard) 

was used in preliminary experiments to optimize conditions for QHMV by 

observing the time required for the rotation speed to be established 

following a step change in the external analog input. Also, the response 

of the electrode current following a step change in the rotation speed 

was monitored. 

2. Flow injection system 

The flow injection apparatus was assembled as described by Hsi (96). 

The flow-through cell was constructed by the machine shop of the 

Department of Chemistry, Iowa State University, and is illustrated in 

Figure III-l. A 25-gauge Pt wire (3 mm long) served as the working 

electrode. The cell was submerged in a beaker filled with supporting 

electrolyte. A Pt-wire counter electrode and the reference electrode 

were also placed in the beaker. The dispersion constant for this flow 

injection system was 0.45. A microprocessor-controlled potentiostat 

(model DEM detector, Dionex, Inc., Sunnyvale, CA) was utilized for the 
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Figure III-l: Flow-through cell utilized for constant potential 

and multi-step potential amperometric detection 
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application of double-step and triple-step potential waveforms. Data 

were recorded using a stripchart recorder (model 250-1, Curken, Inc., 

Lincoln, NE). 
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IV. SQUARE-WAVE HYDRODYNAMICALLY MODULATED VOLTAMMETRY 

A. Theory 

The theoretical basis of QHMV is relatively straightforward. Total 

current observed at a solid electrode is expressed as follows: 

^tot ~ ^conv ^solv ^surf ^ch 

where is the convective-coupled component of current, is the 

current produced by electrolysis of the solvent, is the faradaic 

current from surface-controlled processes such as the formation or 

reduction of oxide and reactions involving adsorbed species, and is 

the double-layer charging current. The transient currents, and 

Ich are independent of mass transport. Since the concentration of HgO 

at the electrode surface is not a function of the rotational velocity, 

Isoiv is not dependent upon mass transport. Therefore, isolation of 

^conv ^tot achieved by modulating the rate of convective 

transport of electroactive species to the electrode surface, i_.£., by 

variation of the rotational velocity of the electrode. The value of 1^^^ 

is measured at two rotational velocities (!•£., the upper (u) and lower 

(1) velocity) and the difference is computed. The resultant signal (AI) 

is a function solely of the mass-transport component of total current at 

the two velocities (equation 2). 

~ ^tot,u ~ ^tot,l 
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~ (^conv,u ^ ^solv ^surf 

^^conVjl ^ ^solv ^ ^surf ^ 

~ ^conv,u ' ̂conv,l 

If the mass-transport coupled reaction behaves according to the Levich 

equation, the theoretical limiting signal, (coul/s) can be 

calculated by equation 3, 

A l l i m  =  0.62 nFAD2/3v-l/G(w^l/2 _ w^l/2)cb (3) 

where n is the number of electrons (eq/mol), F is the Faraday constant 

2 
(96,484 coul/eq), A is the area of the electrode (cm ), D is the 

2 2 diffusion coefficient (cm /s), v is the kinematic viscosity (cm /s), 

CO is the angular velocity (rad/s), and is the bulk concentration of 

analyte (mol/cm^). 

B. Experimental Procedure 

1. Staircase potential waveform 

QHMV, utilizing a staircase potential waveform (Figure IV-1), was 

performed according to the following sequence: 1) Experimental 

parameters were specified, including the cathodic (E^) and anodic (E^) 

limits for the potential scan, the potential step increment (AE), the 

lower (W^) and upper (W^) rotation speeds, the time delay (t^) required 

after application of a change in rotation speed (AW) to allow current 

stabilization prior to the measurement of current, and the number of 

data points (N) to be collected at each rotation speed. 2) The average 
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Figure IV-1: Staircase potential waveform 

Arrow indicates point at which measurement 

of current commences. 
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of the N values of current measured at W^j and was calculated for each 

value of potential, and the difference between the two average current 

values (AI) was computed. 3) Finally, the data were plotted as AL vs. E. 

2. Triple-step potential waveform 

QHMV was applied also utilizing the triple-step potential waveform 

illustrated in Figure IV-2. The waveform consisted of an initial 

potential value (Ej) which resulted in reduction of PtOH and PtO, an 

oxidizing potential (Eg) for which surface oxidation was initiated, and a 

sampling potential (Eg < Eg) at which the faradaic signal was measured. 

The triple-step waveform was applied at both W^j and during each 

modulation cycle of rotation speed, and AI was calculated corresponding 

to AW. Potential E^ was incremented by AE after completion of each 

modulation cycle. The time spent at each potential is designated by t^, 

tg, and tg, respectively. 

A plot of AL vs. tg was generated for a series of Eg values by 

holding Eg constant and incrementing tg following each modulation cycle 

of rotation speed. Similarly, plots of AL vs. t^ were constructed for 

several values of Eg by holding Eg constant and incrementing tg at the 

completion of each modulation cycle of rotation speed. 

C. Optimization of Parameters 

The time required for relaxation of the hydrodynamic boundary layer 

to a steady-state value following a step-wise change in the disk speed 

has been discussed in detail by Albery, Hillman, and Bruckenstein (97). 

The relaxation time is dependent upon the final rotation speed and the 
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Figure IV-2: Triple-step potential waveform 

Arrow indicates point at which measurement 

of current commences. 
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Schmidt number (the dimensionless ratio v/D), and has been shown to 

occur within 4% of the time required for a single rotation. 

The time required for the rotation speed to be established follow­

ing a step change in the voltage applied to the speed controller is 

given in Table IV-1. Note that the time required to achieve the final 

speed upon deceleration is longer than the time required to establish 

the final speed upon acceleration for equal values of |6W|. 

Table IV-1. Time response of the MSR to a voltage step 

Initial Speed 
(rpm) 

Final Speed 
(rpm) 

Time to achieve 95% of final speed 
(ms) 

1000 2000 20 

1000 3000 30 

1000 4000 30 

2000 1000 30 

3000 1000 40 

4000 1000 60 

When stepping from W-j to W^, the thickness of the diffusion layer 

(ô) decreases and any excess reactant in the hydrodynamic layer is 

depleted quickly as it diffuses to the electrode. The time required 

for this process is determined by the distance through which the 

reactant must diffuse. The thickness of the diffusion layer is given 

approximately by 6 = 1.51 Because of the reciprocal 

dependence of 6 on w, 5 at 4000 rpm is less than 6 at 1000 rpm. 

Therefore, one would expect the current to stabilize faster when stepping 
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from 1000 rpm to 4000 rpm than when stepping from 4000 rpm to 1000 rpm. 

This expected behavior was verified experimentally. In addition, the 

time required for the total current to stabilize following deceleration 

to the same rotation speed was found to be independent of the value of 

the upper rotation speed. 

To produce a well-defined AI-E curve for a staircase potential 

waveform, especially in the regions of rapidly changing current, the 

potential increment should be small. The resolution of a 12-bit D/A 

converter is 5 mV. Therefore, an analog scaling device was constructed 

to increase the resolution of the D/A converter so that the potential 

could be set accurately even at small values of AE. The potential range 

of the D/A converter was -10 V to 9.995 V, whereas for most electrode 

materials, a potential range of -2.0 V to 2.0 V is sufficient. The full 

range of the D/A converter was utilized with the analog scaling device, 

thus increasing resolution. For example, if a potential of 1.0 V was to 

be applied at the electrode, the computer was programmed to output a 

signal of 1.0 V/DV (DV is the deamplification factor). If DV = 0.2, the 

potential output by the computer was 5.0 V. The signal output by the 

computer was passed through a variable deampl if ier (E^^^ = DV E^.^) then 

applied to the potentiostat. The actual potential applied was measured 

by passing the potential signal from the potentiostat through a variable 

amplifier (E^^^ = E.^/DV) to the A/D converter. The computer was 

'programmed to account for the scaling factor when storing the measured 

potential values. For the case where DV = 0.2, the resolution of the 

D/A converter was 1 mV. By making the deamplification factor variable. 
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one could choose the factor which provided maximum resolution for each 

system being investigated. 

Following a time delay (ty), the current, measured at each rotation 

speed, was sampled N times and the values were averaged to minimize the 

effect of current fluctuations (i..£., noise). Each current measurement 

required 10 ms. Typical values of t^ and N were 150 ms and 10. Upon 

completion of each modulation cycle, the AL value was calculated and 

stored. 

Each of the parameters discussed (i_.e^., AE, t^, N) and data 

manipulation affects the total time required to complete an experiment, 

which in turn affects the value of AW and the frequency of modulation 

which can be applied. A thermal circuit breaker protected the motor of 

the rotator from overheating; therefore, if the AW was too large, and/or 

the frequency was too high, the experiment could not be completed 

without triggering the circuit breaker. Consequently, a compromise 

between AW and frequency was made. For example, the rotator could not 

be modulated between 1000 rpm and 5000 rpm at 1 Hz for a 20-min period 

without tripping the circuit breaker. However, modulation between 1000 

rpm and 4000 rpm at 1 Hz could be applied for successive 20-min periods 

over 6-8 hr with minimal shutdown. Modulation between 1000 rpm and 4000 

rpm was applied typically. 
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V. SURVEY OF ANODIC REACTIONS USING CYCLIC VOLTAMMETRY AND 

SQUARE-WAVE HYDRODYNAMICALLY MODULATED VOLTAMMETRY 

A. Introduction 

Numerous anodic reactions were examined by the application of cyclic 

voltammetry (CV) and square-wave hydrodynamically modulated voltammetry 

(QHMV). Current-potential (I-E) curves were recorded as a function of 

rotational velocity (w) or potential scan rate ((|>). The current produced 

by a mass-transport limited reaction increases as w is increased 

according to the Levich equation 

I = 0.62 nFAD^/^v'^/^wl/Zcb 

Mass-transport limited current is independent of On the other hand, 

the current produced by surface-controlled reactions, i..e^., current 

limited by the area of the electrode, is dependent on 4) and independent 

of to. The dependence on <j) is observed since the amount of charge (q) is 

constant for the scan of potential between two potential values. Hence, 

when <t> is increased, the time necessary to pass through the potential 

region decreases and the instantaneous current (I = dq/dt) must increase. 

The study of electrochemical reactions is complicated when mass-transport 

and surface reactivity contribute simultaneously to the control of the 

reaction rate. The development of QHMV has made possible the extraction 

of the convective-coupled component from the total current. Hence, 

current-potential curves (AI-E) are simplified and the study of electro­

chemical reactions is facilitated. A significant advantage of QHMV is 
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the ability to observe mass-transport coupled reactions occurring 

simultaneously with Og evolution as well as oxide formation. 

The investigation of anodic reactions electrocatalyzed by an 

intermediate stage of noble metal oxides was of major interest in this 

research project. Anodic reactions involving 0-transfer mechanisms 

derived the most benefit from the oxide layer. Six anodic reactions 

will be discussed in some detail. The results obtained for the remainder 

of the analytes investigated are summarized briefly at the end of this 

section. 

B. Residual Curves 

The characteristic I-E and AL-E curves obtained for Pt, Au, Pd, and 

Ir electrodes in the absence of electroactive species will be described 

briefly. The so-called "residual curves" in acidic media are shown in 

Figures V-1, V-2, V-3, and V-4. The curves for Pt and Au in basic media 

are similar in appearance to those in acidic media, except that the 

potential at which reactions such as oxide formation and reduction, Og 

evolution, and Hg evolution are observed to shift 59 mV negative per 

unit of pH. The practical anodic limit (E^) of the potential scan in CV 

is usually considered to be that value for which the current from Og 

evolution has risen to become a significant fraction (ca. 0.2-0.5) of the 

analytical signal for faradaic reactions under study. The practical 

"limit for QHMV is that value for which the error in computing AI is a 

significant fraction of the transport coupled signal of interest. The 

practical anodic limits observed in this research for CV and QHMV for 
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Figure V-1: I-E and AI-E curves of Pt in 0.5 M HgSO^ 

I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

AL-E curve 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (t^): 150 ms 

Number of data points (N): 10 
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Figure V-2: I-E and AI-E curves of Pd in 0.5 M HgSO^ 

I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

AI-E curve 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (t^): 150 ms 

Number of data points (N): 10 
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Figure V-3: I-E and AI-E curves of Au in 0.5 M HgSO^ 

I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

AI-E curve 

Lower rotation speed (W-j); 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 150 ms 

Number of data points (N): 10 



www.manaraa.com

150-

AI(/LtA) I ifxA ) — 

-50 — 

0.9 

E(V vs. SCE) 

— 0.3 

CO 
CO 



www.manaraa.com

Figure V-4; I-E and Al-E curves of Ir in 5.0 M HgSO^ 

I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

AL-E curve 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 200 ms 

Number of data points (N): 25 
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each electrode are listed in Table V-1. Note that for QHMV, the anodic 

potential limit is extended approximately 150-400 mV beyond the limit 

for CV depending upon the electrode material. 

Table V-1. Practical anodic potential limits for CV and QHMV. 

Electrode Electrolyte Anodic Potential Limit Extension of E^ by QHMV 

Material (V vs. SCE) (mV) 
CV® QHMV^ 

Pt 0.5 M HgSO^ 1.3 1.65 350 

0.1 M NaOH 0.6 1.0 400 

Au 0.5 M HgSO^ 1.6 1.85 250 

0.1 M NaOH 0.6 0.9 300 

Pd 0.5 M HgSO^ 1.2 • 1.6 400 

Ir 5 M HgSO^ 1.3 1.45 150 

The potential at which the current from Op evolution is a 
significant fraction (ca. 0.2-0.5) of the analytical signal for 
faradaic reactions under study. 

^ The potential for which the error in computing AL is a 
significant fraction of the transport coupled signal of interest. 

The residual I-E curve for a Pt electrode in 0.5 M HgSO^ is shown 

in Figure V-1. The small anodic current observed in the region 0.1 V < 

E < 0.55 V during the positive scan of potential is due to charging of 

the double-layer. At E > 0.55 V, surface oxide is formed: PtOH in the 

region 0.55 V < E < 0.81 V and PtO at E > 0.81 V. Appreciable Og 

evolution occurs at E > 1.25 V. During the negative scan of potential, 
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reduction of the surface oxide occurs yielding the large cathodic peak 

at Ep = 0.48 V. The formation and dissolution of adsorbed atomic H 

occurs on the cathodic and anodic scans, respectively, for 0.1 V > E > 

-0.2 V. Molecular Hg is evolved at E < -0.2 V. 

The processes occurring at a Pd electrode parallel those on Ft; 

however, the shape of the I-E curve is unique to Pd (Figure V-2). 

Double-layer charging current occurs in the region 0.2 V < E < 0.5 V 

followed by formation of Pd oxide at E > 0.5 V. The evolution of Og 

commences at E > ca. 1.15 V. Reduction of Pd oxide occurs at E„ = 0.41 V 
— P 

producing a sharper peak than observed for Pt. No characteristic peaks 

are observed for the adsorption of H on Pd owing to the complicating 

factor that H atoms not only adsorb on Pd but also absorb into the metal. 

The useful potential range for CV at Au is broader than for either 

Pt or Pd (Figure V-3). The double-layer region extends from -0.4 V < 

E < 0.8 V during the positive scan of potential. Oxidation of the Au 

surface occurs at E > ca. 0.8 V. The anodic wave produced by oxidation 

of Au to AuOH in the potential region 0.80 V < E < 1.06 V is observed 

only at high current sensitivities. The conclusion that AuOH is produced 

is supported by results obtained utilizing nonelectrochemical methods 

(64, 65, 68). The anodic wave observed at E > 1.06 V is produced by the 

formation of AuG. Oxygen evolution begins at ca. 1.5 V. The Au oxide 

is reduced rapidly with E^ = 0.88 V. Continuing the negative potential 

-scan, only double-layer charging current is observed in the region 

0.7 V > E > -0.4V and reduction of occurs at E < -0.4 V. Adsorption 

of H atoms on Au is minimal; therefore, cathodic and anodic waves for 
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generation and dissolution of adsorbed H are not observed. 

An electrolyte solution of 5 M HgSO^ was utilized for voltammetric 

studies at an Ir electrode. The highly acidic electrolyte minimizes the 

continuous buildup of oxide which occurs in less-concentrated acidic 

electrolytes with each subsequent cycle of potential. The residual I-E 

curve for Ir is shown in Figure V-4. The anodic dissolution of adsorbed 

H from the surface produces the current peaks at -0.08 V and 0.06 V on 

the anodic scan of potential. At E > 0.16 V, oxidation of the Ir surface 

occurs. Evolution of Og begins at ca^. 1.25 V. During the negative scan 

of potential, no sharp peak is observed for cathodic dissolution of 

oxide. Instead, reduction of the oxide occurs over a broad range of 

potential overlapping with the region of the H adsorption wave. 

C. Anodic Reactions 

1. Arsenic(III) 

The electro-oxidation of As(III) at a Pt electrode has been studied 

in detail by several researchers (23-25, 48, 98, 99). Arsenic ions 

adsorb on Pt and exhibit an inhibitory effect on the anodic formation of 

surface oxide (25, 48). Arsenic(III) is oxidatively desorbed as As(V). 

Zakharov and Songina (23), Lown and Johnson (24), and Cabelka et al. 

(25) reported that the mechanism of As(III) oxidation involves the 

transfer of an O-atom from the oxide to the As(III) species as indicated 

schematically by 

Pt0[0] + As (OH)3 > PtO + OAs (OH) 3 
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The I-E curve recorded for As(III) is shown in Figure V-5a. 

Although the oxidation of As(III) is thermodynamically allowed at 

E > 0.32 V, no current was observed until ca. 0.75 V. An anodic, peak-

shaped wave (A) was produced at E > 0.75 V and is attributed to three 

concurrent processes: 1) oxidation of the Pt surface, 2) oxidation of 

adsorbed As(III), and 3) oxidation of As(III) transported to the 

electrode surface by convective-diffusion. Note that oxide formation 

was suppressed by ca^. 150 mV due to the presence of adsorbed As (III). 

Maximum current was obtained during the positive scan of potential at 

ca. 0.85 V. A steady decrease in anodic current was observed for 

E > 0.85 V owing principally to the loss of current produced by the 

oxidation of adsorbed As(III). Upon reversal of the potential scan at 

Eg = 1.3 V, an anodic current plateau was observed in the region 1.2 V < 

E < 0.7 V. Peak B corresponds to the reduction of Pt oxide. The 

shoulder on the falling edge of the oxide reduction peak (C) is due to 

the underpotential deposition of As(V). 

Current-potential curves recorded as a function of w at a constant 

value of (j) indicated that the oxidation of As(III) was dependent upon w, 

although plots of I vs. were nonlinear. A series of I-E curves was 

recorded while varying * at a constant value of tu. The height of peak A 

varied with changes in hence, surface-controlled reactions, i_.e^., 

oxide formation and oxidative desorption of As(III), are occurring 

simultaneously with the transport-coupled oxidation of As(III). The 

magnitude of the current plateau observed in the region 1.2 V < E < 0.7 V 

during the negative scan of potential was independent of however, the 
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Figure V-5; I-E and AI-E curves of 0.5 mM As(III) in 0.5 M HgSO^ 

at a Pt RDE 

a. I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

b. AL-E curve 

Lower rotation speed (W-j): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (t^): 150 ms 

Number of data points (N): 10 
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current magnitude was much less than the predicted transport-limited 

value. Hence, the reaction is under mixed transport and kinetic control. 

Wave A is comprised of three simultaneous processes, two of which 

are independent of w; hence, the transport-coupled component of total 

current can be extracted by the application of QHMV (Figure V-5b). 

During the positive scan of potential, a large anodic wave (A) was 

observed corresponding to the oxidation of As(III) to As(V) with a 

maximum value attained in the region 0.8 V < E < 0.9 V. As the positive 

scan of potential continued, AI decreased steadily; however, as the 

potential was increased beyond 1.25 V, AI in region B increased and 

approached the maximum value observed for wave A. Upon reversal of the 

potential scan, the mass-transport coupled oxidation of As(III) continued 

as long as Og was being evolved. A AI plateau was observed in the region 

1.2 V < E < 0.9 V for the oxidation of As(III). The magnitude of AI in 

this region was dependent upon E^; as E^ became more positive, AI 

decreased. 

The rising portion of the anodic wave was analyzed by measuring the 

value of Egyg - E^yg. The predicted value for a reversible reaction is 

^2/3 ~ ̂ 1/3 ~ 0'0356/n. Therefore, if n = 2, a value of 17.8 mV is 

expected. The observed value of Egyg - E^yg was 20 mV; hence, the 

reaction of As(III) to As(V) is virtually reversible. However, recall 

that the theoretical E° for the As(V)/As(III) half reaction is 0.32 V. 

"A reaction appearing to be reversible but occurring at an overpotential 

(n) of 400 mV can only be rationalized in terms of electrocatalysis 

caused by a potential dependent change in activity of the electrode 
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surface. The anodic formation of surface oxide is inhibited by the 

presence of adsorbed As(III). Adsorbed As(III) is oxidative!./ desorbed 

by a mechanism concluded to involve 0-atom transfer from PtOH to the As-

species (25, 48). When a small amount of the adsorbed As(III) is 

desorbed, corresponding bare Pt sites are rapidly converted to PtOH 

which has a consequential accelerating effect on the reaction of the 

remainder of adsorbed As(III). Furthermore, oxidation of As(III) from 

the bulk solution is initiated also by the production of PtOH. 

The oxidation of As(III) at a Au electrode has been examined by 

Zakharov et (41) and Loucka (99). Arsenic(III) adsorbs on Au; 

however, not to the extent of the adsorption on Pt. The I-E curve for 

As(III) on Au is shown in Figure V-6a. Wave A (E^ = 0.82 V) was the 

result of oxidation of As(III) to As(V). A limiting current plateau 

was observed in the region 0.9 V < E < 1.1 V. The small peak observed 

at Ep = 0.85 V was the result of the oxidative desorption of As(III). 

At E > 1.1 V, oxidation of the Au surface, Le^., the formation of AuO, 

occurred followed by a decrease in anodic current below the limiting 

value for As(III). When the scan direction was reversed, anodic current 

rapidly decreased; no current plateau was observed for As(III) oxidation 

on Au as was observed for As(III) oxidation during the negative scan on 

Pt. Reduction of Au oxide commenced at ca. 0.95 V. 

The AI-E curve obtained for As(III) oxidation at a Au electrode is 

-shown in Figure V-6b. During the positive scan of potential, an anodic 

wave (A) was observed. A limiting value of current was attained in the 

region 0.95 V < E < 1.15 V. At E > 1.15 V, AI decreased rapidly to a 
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Figure V-6: I-E and AI-E curves of 0.5 mM As(III) in 0,5 M HgSO^ 

at a Au RDE 

a. I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

b. AI-E curve 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 150 ms 

Number of data points (N): 10 



www.manaraa.com

50 

— 50 

—100 

— 150 

— 30 

— 60 

--90 

0.9 0.3 1.5 
E ( V  v s .  S C E )  



www.manaraa.com

51 

near-zero value. However, at E > 1.40 V, AL increased linearly with 

potential (region B). The maximum AI attained at 1.85 V was c^. 23% of 

the theoretical value of observed in region A. Upon reversal of 

the potential scan, AI decreased rapidly to zero. Anodic AI was observed 

following the reduction of Au oxide, the magnitude of which was dependent 

upon E^. 

The electro-oxidation of As(III) at a Au electrode produced an 

anodic wave with Egyg - E^yg = 10 mV; hence, the reaction was concluded 

to be virtually reversible. However, the reaction does not occur until 

the potential is 150 mV more positive than the E° for this reaction. 

Once again, electrocatalysis of the reaction is concluded to occur, 

presumably through the involvement of adsorbed OH radicals on Au. The 

formation of AuOH proceeds at E > 0.8 V. The value of AI remained at 

the mass-transport limited value until the formation of AuO occurred at 

E > c^. 1.1 V. The inhibitory effect exhibited by AuO is much greater 

than the inhibitory effect observed for As(III) oxidation at a Pt 

electrode. The observed difference in behavior of As(III) at Au and Pt 

may be attributed to a low surface density of OH species adsorbed on 

AuO. Also, the strength of the Au-0 bond may preclude direct 0-atom 

transfer and AuO cannot participate in the oxidation of As(III). An 

increase in AI was observed concurrently with an increase in surface 

density of i_.^., as Og evolution commenced at ca. 1.4 V and 

subsequently, as the formation of a highly hydrated Au(III) species, 

AufOH)], occurred. Upon scan reversal, AL rapidly diminished to zero 

and remained at zero until Au oxide was reduced ca^. 0.88 V, giving a 
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small anodic AI. 

2. Nitrite 

The I-E curves for NOg" at Pt and Au (Figures V-7 and V-8) appear, 

at first glance, quite similar to the I-E curves obtained for As(III) at 

Pt and Au (see Figures V-5 and V-6). Further voltammetric investigation 

of NOg" oxidation demonstrated both similarities and differences with 

the anodic behavior of As(III). Nitrite oxidation during the positive 

scan of potential occurred concomitantly with the initial stage of 

surface oxidation. No mass-transport coupled oxidation of NOg" occurred 

simultaneously with Og evolution on Pt; however, renewal of the oxidative 

process for NOg" occurred concurrently with Og evolution at a Au 

electrode. The literature available for the electro-oxidation of NOg" 

on Pt and Au is sparse. However, Guidelli et (100), who examined the 

oxidation of NOg" on Pt, and Erlikh et (42), who studied NOg" on Au, 

concluded that NOg" oxidation involves the interaction of active surface 

oxygen (PtOH and AuOH) and passivation is due to further oxidation of the 

oxides to a less active form (PtO and AuG). 

No current was observed for oxidation of NO2" for E < 0.8 V at a 

Pt electrode (Figure V-7a) due to the suppression of oxide formation 

caused by the presence of adsorbed NOg". At E > 0.8 V on the positive 

scan, a large, anodic, peak-shaped wave (A) was observed with maximum 

current at E = ca. 1.03 V. The anodic wave is comprised of three 

components: 1) oxidation of the Pt surface, 2) oxidation of adsorbed 

NOg", and 3) oxidation of NOg" transported to the electrode by 

convective-diffusion. As the positive scan of potential was continued. 
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Figure V-7: I-E and AI-E curves of 0.5 mM NOg" in 0.5 M HgSO^ 

at a Pt RDE 

a. I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

b. AL-E curve 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 150 ms 

Number of data points (N): 10 
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Figure V-8: I-E and AI-E curves of 0.5 mM NOg" in 0.5 M HgSO^ 

at a Au RDE 

a. I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

b. Al-E curve 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (t^): 150 ms 

Number of data points (N): 10 



www.manaraa.com

56 

a 

--150 

- - 100  

-- 50 

—50 

—100 

-I—150 

---30 

---60 

1.5 0.9 0.3- -0.3 

E ( V  v s .  S C E )  



www.manaraa.com

57 

anodic current decreased steadily caused by the loss of the contribution 

from the oxidation of adsorbed NOg". The anodic current observed in the 

region 1.2 V > E > 1.0 V during the negative scan of potential was less 

than the value predicted by the Levich equation. 

A series of I-E curves was recorded as a function of w at a constant 

value of <j>. The oxidation of NOg" was dependent upon the value of w; 

however, a plot of I vs. was not linear. Current-potential curves 

were also recorded at various values of * for a given value of to. Wave 

A was dependent upon (f>, as well as w, indicating that surface-controlled 

reactions were occurring simultaneously with NOg" oxidation. 

The AI-E curve obtained by QHMV is shown in Figure V-7b. A large 

anodic wave was observed during the positive scan of potential which 

reached a maximum value at E = ca. 1.0 V. At E > 1.0 V, AI steadily 

decreased, reaching zero at ca^. 1.5 V. No additional transport-coupled 

current occurred during the remainder of the positive potential scan. 

The magnitude of AI observed during the subsequent negative scan was 

highly dependent upon E^. For E^ > 1.45 V, AI was zero throughout the 

negative potential scan. For E^ < 1.45 V, an anodic AL was observed in 

the region 1.45 V > E > 0.90 V. The value of AI increased as E^ was 

made more negative. 

The oxidation of NOg" has been concluded to occur by the electro-

catalytic involvement of OH radicals on the Pt surface. The E" value 

'for the NOg'/NOg" half reaction is 0.70 V. No appreciable current was 

observed until n > 150 mV. Nitrite ions adsorb on Pt and inhibit the 

formation of surface oxides. Adsorbed NOg" is oxidatively desorbed by 
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a mechanism concluded to involve 0-atom transfer from PtOH to the NOg" 

species. When a small amount of adsorbed NOg" is desorbed, the 

associated Pt sites are rapidly converted to PtOH. An accelerating 

effect then is exhibited on the reaction of the remainder of adsorbed 

NOg". In addition, the oxidation of NOg" from the bulk solution is 

initiated by the presence of PtOH. Conversion of PtOH to PtO results 

in a decrease of NOg" oxidation at E > ca^. 1.0 V. Oxygen evolution 

appears to have no catalytic effect on the mass-transport coupled anodic 

reaction of NOg". 

The I-E curve obtained for NOg" at a Au electrode is shown in 

Figure V-8a. An anodic wave (A) was produced during the positive scan 

at E > 0.9 V, as the result of the oxidation of NOg" to NOg", and a 

limiting current plateau was attained in the region 0.95 V < E < 1.1 V. 

At E > 1.1 V, bulk oxidation of the Au surface occurred simultaneously 

with NOg" oxidation. Upon reversal of the potential scan, the anodic 

current steadily decreased. The Au oxide was reduced with E^ = 0.88 V. 

A series of curves recorded as a function of w at a given value of 

(|) demonstrated that the anodic current plateau was dependent upon w; 

however, the plot of I vs. was not linear. Variation of * at a 

constant value of w demonstrated that the anodic current plateau was 

independent of 

Two anodic waves were observed upon application of QHMV (Figure 

•V-8b). The first wave (A) corresponded to the production of NOg"; 

however, the predicted was not attained. At E > 1.25 V, AI 

decreased; however, at E > 1.45 V an increase in AI was observed (B) 



www.manaraa.com

59 

but which did not exceed 23% of the value for wave A. For E = 1.85 V, 

no AL was observed during the negative scan of potential; however, at 

less positive values, a small increase in anodic AI was observed at 

E < 0.95 V, , NOg" oxidation was renewed upon reduction of Au oxide. 

The E° for the NOg'/NOg" half reaction is 0.70 V. No current for 

the oxidation of NOg" was observed, however, until E > 0.8 V which 

corresponds with the potential at which the formation of AuOH proceeds. 

Hence, NOg" oxidation is concluded to be catalyzed by AuOH. The 

formation of AuO at c^. 1.1 V inhibits the oxidation of NOg". This 

observation is in agreement with the results reported by Erlikh et al. 

(42). In contrast to the behavior observed at a Pt electrode, renewed 

oxidation was observed at a Au electrode simultaneously with Og 

evolution. Furthermore, an interesting similarity was observed in 

comparison to As(III) oxidation at a Au electrode. The anodic AI 

observed for both NOg" and As(III) concomitantly with Og evolution was 

23% of the anodic AL value attained in the region 0.95 V < E < 1.1 V. 

The resulting increase in anodic AL may be attributed to flaking of 

AugOg from the electrode surface exposing Au metal sites. Reformation 

of AUgOg and/or evolution of Og would occur at these sites which would 

be expected to have a similar catalytic effect on the oxidation of NOg" 

and As(III). 

3. Iodide 

Since the oxidation of I" at a Pt electrode was chosen to be 

studied in greater detail, only a brief summary will be presented here 

to facilitate the discussion of results obtained for I" at other noble 
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metal electrodes. For I-E and AL-E curves, see Figures VI-2 and VI-5; 

for a complete discussion see section VI. 

The mass-transport limited production of Ig occurs with apparent 

reversibility at = 0.48 V, as predicted thermodynamically. The 

anodic formation of surface oxide on a Pt electrode during the positive 

scan of potential is significantly inhibited by the presence of adsorbed 

I (see Figure VI-1). Adsorbed I is oxidatively desorbed as lOg" in the 

region 1.0 V < E < 1.2 V by a mechanism concluded to involve 0-atom 

transfer from PtOH to the I species. When a small amount of adsorbed I 

is desorbed, the corresponding bare Pt sites are rapidly converted to 

more PtOH which has a consequential accelerating effect on the reaction 

of the remaining adsorbed I. Furthermore, oxidation of I" from the bulk 

solution to lOg" is initiated by the production of PtOH. Unfortunately, 

the potential range is quite narrow over which the oxidation of I" to 

lOg" is thermodynamically allowed, and in which PtOH exists in an 

appreciable quantity at the electrode surface. Rearrangement of PtOH 

to OHPt and further oxidation to PtO occur rapidly at E > 1.2 V and 

lOg" production is sharply suppressed. As the potential is increased 

beyond 1.25 V, the mass-transport limited production of lOg" proceeds 

simultaneously with Og evolution. The formation of lO^" at E > 1.25 V 

is attributed to the catalytic involvement of OH radicals produced on 

the electrode surface during Og evolution. Upon reversal of the 

-potential scan, lOg" production proceeds as long as Og was evolved. 

At E < 1.3 V, only the transport-limited oxidation of I" to Ig occurs. 

The oxidation of I~ in basic media at a Pt electrode was investi-
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gated briefly. No anodic wave was observed for the oxidation of I" to 

Ig. The simultaneous formation" of lOg" and surface oxide produced a 

peak at = 0.37 V. The height of this peak varied nonlinearly with 

0)^ as the result of surface-controlled reactions, i^.e^., the formation of 

surface oxide and the possible oxidative desorption of I occurring 

concomitantly with the mass-transport coupled production of lO^". A 

small, single, anodic peak (E^ = 0.37 V) was observed upon application 

of QHMV for I" in basic media. However, no mass-transport coupled 

formation of lO^" was observed simultaneously with Og evolution. 

No study of the voltammetric response of I" at Au, Ir, or Pd 

electrodes has been reported in the literature. The initial observa­

tions obtained upon application of CV and QHMV will be described briefly. 

Of major significance is the mass-transport coupled production of lOg" 

occurring simultaneously with Og evolution. 

The I-E and AI-E curves for I" at a Au electrode are shown in 

Figure V-9. Several anodic waves and peaks were observed during the 

positive scan of potential. The oxidation of I~ to Ig proceeds with 

the thermodynamically predicted value of E^ = 0.48 V to yield an anodic 

current plateau (A) in the region 0.58 V < E < 0.88 V. The second 

anodic wave (B) was observed in the region 0.88 V < E < 1.12 V and is 

attributed to the oxidation of I" to HIO. Peak C is produced as the 

result of the anodic formation of Au oxide and, possibly, the formation 

-of a gold-iodide surface species. Peak D is attributed to the formation 

of lOg" concomitantly with surface oxidation. Current in the region 

1.4 V < E < 1.6 V corresponds to the formation of 10^ (E). Oxygen 
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Figure V-9: I-E and AI-E curves of 0.5 mM I in 0.5 M HgSO^ 

at a Au RDE 

a. I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

b. AI-E curve 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 150 ms 

Number of data points (N): 10 
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evolution increased rapidly at E > 1.6 V; therefore, the potential scan 

was reversed at E = 1.6 V. Upon reversal of the potential scan, the 

formation of lOg" was observed in the region 1.6 V > E > 1.45 V. At 

E < 1.45 V, current decreased to the current plateau value attained 

for the oxidation of I" to Ig (A). The reduction of Au oxide (F) 

occurred with E^ = 0.88 V. Peak G is attributed to the reduction of 

reversibly adsorbed Ig. 

Results for the variation of w at a constant value of * demon­

strated that the anodic current plateau (A) varied linearly with as 

predicted by the Levich equation; hence, Ig formation is a mass-

transport limited reaction. Current owing to the oxidation of I" to 

HIO (B) reached a plateau value at progressively more positive values 

of E, as CO was increased. Current in the region 1.15 V < E < 1.6 V 

increased nonlinearly with due to the surface-controlled oxidation 

of Au which occurred simultaneously with the transport-coupled formation 

of IO3". 

A series of I-E curves was recorded as a function of * at a 

constant value of w. Wave A was independent of (}> which is the expected 

behavior of a mass-transport limited reaction. The of wave B 

shifted to more positive potential values at low m. The height of 

peaks C and D varied with * which is the typical response for reactions 

under surface control. At * < 0.5 V/min, peak D was not observed. 

"Current in the region of wave E was dependent upon ((> because of the 

simultaneous formation of AugOg. 

The application of QHMV produced a AI-E curve less complex than 
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the corresponding I-E curve for CV. Three anodic waves were observed 

during the positive scan of potential. The mass-transport limited 

formation of Ig (A) was observed in the region 0.55 V < E < 0.95V. The 

oxidation of I" to HIO produces wave B. Wave C was observed for the 

oxidation of I" to lOg". A limiting value of AL was attained in the 

region 1.55 V < E < 1.75 V. The ratio of is 6.0 as expected 

based on the assigned reactions. Upon reversal of the potential scan, 

AL decreased to the limiting value observed for wave A. The limiting 

AL value for the production of Ig was observed in the region 1.5 V > 

E > 0.55 V. As in the case of Pt, Ig formation is not inhibited by the 

presence of surface oxides. 

The oxidation of I" at an Ir electrode was examined briefly. An 

electrolyte solution of 5 M HgSO^ was utilized to minimize the contin­

uous buildup of oxide with repetitive potential scanning that is 

observed in less concentrated acidic solutions. The I-E curve obtained 

is shown in Figure V-lOa. The anodic formation of Ir oxide commenced 

at E = 0.16 V. The anodic wave (A), E, = 0.37 V, is attributed to the 

oxidation of I" to Ig. Zakharov and Songina (101) also observed that 

the oxidation of I~ to Ig occurred at E < E° in highly acidic media at 

a Pt electrode; however, they did not offer an explanation for the 

phenomenon. Since this behavior is not unique to the Ir electrode, it 

is concluded that the highly acidic media is responsible for the 

-observed anodic response. The cause of this behavior requires further 

investigation. The large residual current obscured the observation of 

a limiting current plateau for the production of Ig at this concentration 



www.manaraa.com

Figure V-10: I-E and AI-E curves of 0.5 mM I in 5.0 M HgSO^ 

at an Ir RDE 

a. I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

b. A I - E  curve 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 200 ms 

Number of data points (N): 25 
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of I". At E > 1.0 V, anodic current increased producing peak B which 

corresponds to the oxidation of I" to a mixture of HIO and lOg". At 

E > 1.28 V, anodic decomposition of the solvent became significant, 

therefore, the anodic potential limit was established. 

Current-potential curves, recorded as a function of ̂  while holding 

CO constant, were not particularly informative for the evaluation of the 

surface dependence of the oxidative reactions of I" since Ir oxidation 

occurred over the whole potential range of I" oxidation. A series of 

I-E curves was recorded as a function of w at a constant value of 

Although both anodic waves were dependent upon w, precise rotation speed 

data could not be obtained due to the large contribution to the total 

current from the formation of Ir oxide. 

The application of QHMV was advantageous since the contribution to 

the total current from the mass-transport coupled oxidation of I" could 

be isolated from the large background current produced during the 

formation of Ir oxide- The AL-E curve is shown in Figure V-lOb. During 

the positive scan of potential, an anodic AI plateau (A) was observed in 

the region 0.3 V < E < 1.0 V corresponding to the oxidation of I" to Ig. 

At E > 1.0 V, AI decreased; however, AL increased abruptly at E > 1.05 V. 

A limiting AI plateau was attained in the region 1.25 V < E < 1.45 V (B), 

The ratio of ALG/AL  ̂ was 4.26. The ratio of AI values was less than 6, 

as predicted for the formation of lOg", and was concluded to be the 

•result of the concomitant formation of lOg" and an I species with a 

lower oxidation state than lOg", presumably HIO. Upon reversal of the 

potential scan, the limiting value of AI was observed in the region 
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1.45 V > E > 1.3 V. The value of AL decreased to a minimum at ca_. 

1.15 V. The limiting AI value for the formation of Ig was observed 

during the negative scan of potential in the region 1.0 V > E > 0.9 V. 

For E < 0.9 V, AL decreased to zero current at 0.6 V. 

Anodic response of I" at a Pd electrode was observed, as shown in 

Figure V-lla (curve 1), provided that the electrode was not anodized at 

E > 1.3 V. The oxidation of I" to Ig (A) occurred at E > 0.45 V with a 

limiting current plateau attained in the region 0.55 V < E < 0.9 V 

during the positive scan of potential. At E > 1.05 V, a sharp increase 

in current was observed which reached a maximum value at E^ = 1.19 V (B). 

This peak is produced by the concurrent oxidation of Pd and the oxidative 

desorption of I. Oxygen evolution was significant at E > 1.25 V. Upon 

reversal of the potential sweep, current decreased to a plateau in the 

region 1.1 V > E > 0.7 V which corresponds to the oxidation of I" to Ig. 

The reduction peak (C) observed at E^ = -0.05 V is due to the reduction 

of irreversibly adsorbed Ig. 

Current-potential curves were recorded as a function of w while 

holding <j) constant. Anodic current observed in the region of wave A 

increased linearly with therefore, the production of Ig is a mass-

transport limited reaction. The anodic current observed for E > 0.9 V 

was dependent upon w as the result of the mass-transport limited 

formation of Ig which occurred simultaneously with the surface-controlled 

-formation of Pd oxide and oxidative desorption of I. Peak C was inde­

pendent of (0 which is indicative of a surface-controlled process. 

A series of I-E curves was also recorded as a function of * at a 
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Figure V-11: I-E and AI-E curves of 0.5 mM I" in 0.5 M HgSO^ 

at a Pd RDE 

a. I-E curves 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

1) Electrode anodized at E ̂  1.3 V 

2) Electrode anodized at E > 1.3 V 

b. AI-E curve 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 150 ms 

Number of data points (N): 10 
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constant value of w. Wave A, produced as the result of the formation of 

Ig, was independent of * as expected for a mass-transport limited 

reaction. The height of peak B decreased rapidly as * was decreased and, 

appeared only as a small shoulder on a rising wave at 4 < 0.5 V/min. 

Hence, the reaction producing lO^" in the potential region of peak B is 

a surface-controlled reaction. The height of peak C decreased and the 

value of Ep shifted more positive as (j) was decreased. 

The AI-E curve recorded for I" at a Pd electrode is shown in Figure 

V-llb. A AL plateau (A) was observed in the region 0.55 V < E < 1.1 V 

which corresponds to the production of Ig. At E > 1.1 V, AL increased 

to a plateau AL value (B) in the region 1.4 V < E < 1.55 V. The ratio 

of Alg/Al^ was 4.74 indicating that a mixture of lOg" and an I species 

with a lower oxidation state is produced simultaneously with Og evolution. 

This behavior is similar to that observed for the further oxidation of I" 

at an Ir electrode. 

The anodic response of I" at a Pd electrode is highly dependent upon 

the pretreatment of the electrode. If the Pd electrode was anodized at 

E > 1,3 V prior to cycling the potential (-0.2 V < E < 1.3 V), the I-E 

curve shown in Figure V-lla (curve 2) was obtained. The mass-transport 

limited oxidation of I" to Ig was not observed in the region 0.55 V < E 

< 0.9 V during the positive scan of potential. However, a peak (D) was 

produced at E^ = 0.95 V which corresponds, presumably, to the formation 

'of Pdlg. Peak D increased with each repetitive scan of potential as the 

result of continuous roughening of the electrode surface through the 

oxidation and desorption of Pd metal which produced Pd black and thereby 
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increased the effective surface area of the working electrode. 

Anodization at E > 1.3 V provided the initial Pd black. Evidently, the 

mechanism of reaction changed in the presence of Pd black and the 

formation of Pdig is favored over the production of Ig. The position 

of peak B shifted 35 mV more positive and the height of this peak 

decreased gradually with repetitive scans of potential. During the 

negative scan of potential, peak E was observed as the result of the 

reduction of Pd oxide. Peak C, produced by the reduction of irreversibly 

adsorbed Ig, was not observed. Rotation speed and scan rate studies did 

not provide useful information since the height of peaks B and D changed 

with each consecutive scan of potential even at constant w and 

4. Chloride 

The industrial interest in chlor-alkali technology has prompted the 

study of the electrocatalytic effect of various noble metals and noble 

metal oxides on the CI g evolution reaction (15, 102-117). The funda­

mental and applied aspects of anodic CI g production are discussed by 

Novak, Tilak, and Conway (118). Chlor-alkali technology is reviewed by 

Caldwell (119), and by Venkatesh and Tilak (120). 

Chloride ions strongly adsorb on Pt (15, 103, 104, 121) with 

retention of the negative charge. Adsorbed ions have been shown to 

exhibit an inhibitory effect on the anodic formation of surface oxide 

on Pt (53, 122, 123). Novak and Conway (104) observed that the adsorp­

tion of Cl~ preferentially blocks the formation of PtOH by competing 

with hydroxyl radicals for adsorption sites on the electrode surface. 
A Q 

However, at chloride concentrations greater than 10" ' M, competitive 
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adsorption is observed at E > 0.86 V where the second stage of Pt 

oxidation occurs, » the formation of PtO. 

Two mechanisms have been proposed for the evolution of Clg: 

Cl"(aq) + ^ ^^^^-(ads) + ® (Volmer) 

2SG1'(ads) 2S + CI 2+ (Tafel) 

Cl"(aq) + ^ ^^^^•(ads) + e (Volmer) 

SCI.(ads) + Cl"(aq) + Clgt + e~ (Heyrovsky) 

where S designates an oxidized or partially oxidized Pt surface. The 

second step in each mechanism is the rate determining step. Most 

researchers agree that CI g evolution occurs by a recombination-controlled 

mechanism (mechanism I). A nondiffusion limited current (1^^^-]) is 

attained as the coverage of CI' approaches unity. Since no oxide forma­

tion occurs on Pt in anhydrous trifluoroacetic acid (TFA), the evolution 

of CI 2 has been investigated in TFA/HgO mixtures (0-100% HgO) to evaluate 

the effect which surface oxides exhibit on the production of CI g (102, 

124). In all TFA/HgO mixtures, CI2 evolution proceeds by a recombination-

controlled mechanism; therefore, solvation effects are secondary. For 

the case of anhydrous TFA, S (mechanism I) represents an unoxidized Pt 

electrode surface. The limiting current (Ip^i) obtained at an oxide 

covered surface is 45 times larger than that observed at an unoxidized 

Pt surface. Since the mechanism is the same in both solvents, the 

observed increase in current indicates that substantial electrocatalytic 
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enhancement of the recombination rate for exists for an oxidized 

Pt surface. The increase in the rate of recombination is due to weaker 

binding of Cl« on an oxidized Pt surface than on the Pt metal surface; 

consequently, a lower activation energy exists for the recombination 

step. 

The I-E curve recorded for Cl~ at a Pt electrode is shown in Figure 

V-12a. The anodic formation of surface oxide on a Pt electrode during 

the positive scan of potential is inhibited by the presence of adsorbed 

CI". The formation of CI g commenced at the thermodynamically predicted 

value of 1.11 V, A decrease in the height of the oxide reduction peak 

was observed during the negative scan of potential in the presence of 

Cl~ indicating that adsorbed Cl~ influences not only the potential at 

which oxide formation begins but also the quantity of oxide which forms. 

Adsorbed Cl~ also .affects the adsorption of H on Pt. Although a mono­

layer of H is adsorbed regardless of the coverage by CI", the adsorbed 

CI" affects the energy distribution of adsorbed H by decreasing the 

Pt-H bond energy (121). Therefore, the H adsorption waves were shifted 

to more negative potentials. 

Current-potential curves recorded at different values of (j>, while 

holding w constant, indicated that the evolution of Clg is a surface-

dependent process. The anodic production of CI g exhibited minimal 

dependence upon w as observed by recording I-E curves at different w 

"while holding (|) constant. Hence, the evolution of CI g occurs predomi­

nantly by a surface-controlled process which is consistent with the 

proposed recombination-controlled mechanism. 
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Figure V-12: I-E and AI-E curves of 0.5 mM Cl" in 0.5 M HgSO^ 

at a Pt RDE 

a. I-E curves 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

Pt residual 

0.5 mM Cl" 

b. AI-E curve 

Lower rotation speed (W-j): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 150 ms 

Number of data points (N): 10 
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The AI-E curve obtained by QHMV is shown in Figure V-12b. There 

is a finite contribution to the total current by a mass-transport 

coupled process during the positive scan of potential. Perhaps, the 

formation of CI g occurs to a small extent by an alternate pathway 

(mechanism II) as proposed by Burrows, Entwisle, and Harrison (111). 

Since the rate determining step involves the reaction of with 

CI'(ads)' the reaction is dependent upon the transport of Cl~ to the 

surface; therefore, current is a function of w. The anodic current 

will become limiting provided the kinetics of the second step is fast. 

The observed Al^^^ was approximately 5% of the theoretical Al^^^ 

therefore, the kinetics of the second step are quite slow. The anodic 

formation of CI g occurs predominately by a surface-controlled reaction. 

Currently, the anode material of choice in the chlor-alkali 

industry is a mixed oxide electrode of RuOg and TiOg coated on a Ti 

substrate. This electrode was first patented by Beer (125) in the 

late 1950s. Although the exact composition of commercial cells is 

proprietary, increased production of CI g is observed upon doping the 

electrode with various nonnoble metals ̂ .£., Sn, Bi, or Co. The 

composition of the coating also affects the rate of undesired side 

reactions such as Og evolution or the formation of ClO^". The RuOg/ 

TiOg anode has a low overpotential for Clg evolution; commercial 

chlorine cells operate at an anodic overpotential of ca^. 50 mV (119). 

"Unlike the graphite anode, which is consumed by physical wear and 

electrochemical oxidation (service time of 6-24 months), the RuOg/TiOg 

anode has a service time of 8-10 years. 
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Because RuOg/TiOg is an efficient electrocatalyst for CI g evolution, 

the reaction mechanism has been investigated by numerous researchers 

(111, 113, 116, 126, 127). Comparison of results must be done cautiously 

due to the variation in coating composition and the difficulty in repro-

ducibly preparing the electrode surface. Both the Volmer-Heyrovsky and 

Volmer-Tafel mechanisms have been proposed for CI g evolution on RuOg/TiOg 

electrodes. Ardizzone et (127) reported that the mechanism is 

dependent upon the macroscopic defect structure of the electrode surface. 

At highly compact electrodes, the Volmer-Heyrovsky mechanism predominates 

(113, 127) whereas at highly cracked electrodes, the mechanism changes 

to the Volmer-Tafel pathway. The slow step in both pathways is the 

removal of the adsorbed intermediate therefore the transition between 

mechanisms implies an increase in the metal-halogen surface bond 

strength. Burke and O'Neill (128) suggest that the reaction mechanism 

may involve the participation of surface oxygen species although the 

precise nature of the surface species is uncertain. Based on the results 

obtained for CI2 evolution at a Pt electrode in mixtures of TFA/HgO 

(0-100% HgO) (102, 124), which demonstrate the enhanced electrocatalysis 

of CI2 evolution at an oxide covered electrode, the participation of a 

surface oxygen species is not an unreasonable hypothesis. 

Preliminary results obtained by QHMV indicate that the production 

of CI2 is occurring by a surface-controlled mechanism since no mass-

transport dependent current was observed in either acidic or basic 

media at concentrations as high as 0.1 M CI . 

Gold is not a practical anode for CI2 evolution owing to the 



www.manaraa.com

80 

corrosive nature of the chloride solution; however, electrolytic refining 

of Au by the Wohlwill process takes advantage of the increased rate of 

dissolution of the metal through the formation of stable chloro-gold 

complexes. Therefore, the anodic dissolution of Au in Cl~ solutions has 

been the subject of fundamental electrochemical studies (129-137). 

Chloride ions adsorb on Au at a diffusion-limited rate (134). Dissolu­

tion of Au occurs at E > 0.8 V and approaches the theoretical limiting 

value. The formation of AuClg" proceeds by the mechanism (137) 

^ CT"(aq) > AuCl-(ads) 

A"CT"(ads) > AuCl(ads) + e" 

AuCI(ads) ^ (aq) 

where the third step is the rate determining step. Removal of an 

AuCl^ads) species exposes a bare metal site where adsorption of Cl~ 

occurs rapidly. However, if the Cl~ ions in the diffusion layer are 

consumed faster than they are replenished, i.£., the rate of transport 

becomes limiting, oxide formation is initiated. Passivation of the Au 

dissolution reaction occurs concomitantly with the formation of surface 

oxide (136). The potential at which the onset of passivation is observed 

corresponds to the potential at which sudden changes are observed by 

ellipsometry (135). As the CI' concentration increases, the potential at 

which passivation occurs shifts to more positive values. 

The I-E curve obtained for CI" at a Au electrode is shown in Figure 

V-13a. Wave A corresponds to the formation of AuClg". The formation of 
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Figure V-13: I-E and AI-E curves of 0.5 mM Cl" in 0.5 M HgSO^ 

at a Au RDE 

a. I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

b. AL-E curve 

Lower rotation speed (W-j): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 150 ms 

Number of data points (N): 10 



www.manaraa.com

82 

"100 

-• 50 

I(/tA) 

—50 

--I00 

—10 

- - - 2 0  

—30 

—40 

— 50 

.5 0.9 0.3 -0.3 

E ( V  v s .  S C E )  



www.manaraa.com

83 

Au oxide was observed at ca^. 1.2 V producing wave B. At E > 1.2 V, 

current sharply decreased owing to the passivation of Au dissolution 

which occurs as the formation of surface oxide commences. 

Variation of the ̂  at a constant w indicated that the formation of 

AuClg" is independent of (#. Current in the region 1.2 V < E < 1.6 V 

was dependent upon <j); therefore, surface-controlled processes are 

occurring at E > 1.2 V. The magnitude of waves A and B increased with 

increased w at a constant (j). Since wave A was dependent solely upon w, 

the formation of AuClg" is a mass-transport coupled process. Current in 

the region 1.2 V < E < 1.6 V was independent of w; therefore, only 

surface-controlled processes are occurring. There was no evidence of 

Clg evolution occurring at a Au electrode prior to the evolution of Og. 

The potential region over which corrosion of the Au surface occurs 

is clearly defined by the application of QHMV (Figure V-13b). A single, 

narrow anodic peak, corresponding to the production of AuClg", was 

observed during the positive scan of potential. The magnitude of AI 

rapidly declined to zero at E > 1.15 V. No transport-coupled current 

was observed throughout the remainder of the triangular potential sweep. 

If CI2 evolution occurs at an oxide covered Au electrode simultaneously 

with the evolution of Og, the mechanism involves a surface-controlled 

rate determining step perhaps analagous to the mechanism on Pt, 

a recombination-controlled mechanism. 

5. Bromide 

The investigation of halide ions utilizing QHMV is completed with 

the discussion of the results obtained for the anodic oxidation of Br 
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at Pt and Au electrodes. The I-E and AI-E curves obtained for Br' at Ft 

and Au are shown in Figures V-14 and V-15. The contribution to total 

current by the mass-transport coupled current is dramatically different 

for these electrode materials; however, the AI response can be ration­

alized based on specific properties of the surface oxides formed on Pt 

and Au. 

Bromide ions adsorb on Pt in the H region (-0.2 V < E < 0.1 V) with 

substantial retention of charge (104, 121, 122). The adsorption of Br" 

alters the energy distribution of adsorbed H; however, the total amount 

of H adsorbed does not change regardless of the extent of coverage by 

Br" (104, 122). Partial charge transfer occurs as the potential is 

scanned in the positive direction (138). Unlike CI" which blocks the 

initially deposited OH monolayer at Pt, adsorbed Br" blocks the formation 

of the surface oxide nonselectively over a wide potential range (0.55 V 

< E < 1.25 V) (104). 

The mechanism for Brg evolution on Pt is dependent upon the 

oxidation state of the electrode surface (139). The change in mechanism 

is attributed to the ease of Br" adsorption on an oxide-free or oxide-

covered surface. Although Br" strongly adsorbs on Pt metal, adsorption 

of Br" on an oxide-covered Pt surface does not occur (20, 121, 140). 

The evolution of Brg was proposed to occur on a reduced Pt electrode by 

the mechanism 

Br'(aq) ^ Br'(ads) 

Br'(ads) » Br,ads, + e 
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Figure V-14: I-E and AI-E curves of 0.5 mM Br" in 0.5 M HgSO^ 

at a Pt RDE 

a. I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

b. AL-E curve 

Lower rotation speed (W-j): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 150 ms 

Number of data points (N): 10 
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Figure V-15: I-E and Al-E curves of 0.5 mM Br~ in 0.5 M HgSO^ 

at a Au RDE 

a. I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

b. Al-E curve 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 150 ms 

Number of data points (N): 10 



www.manaraa.com

-- -50 

100 

---30 

60 

.5 0.9 0.3 

E ( V  v s . S C E )  



www.manaraa.com

89 

28'"(ads)-^®'"2(aq) <"• Br'(aq) + :''(ads)-^»''2(aq) ^ 

with the rate determining step being the charge transfer from an adsorbed 

Br' ion to form an adsorbed Br atom. If the rate determining step is 

fast, a limiting current will be observed. The mechanism for the pro­

duction of Brg on an oxidized electrode occurs according to the scheme 

Br'(aq) ' ®''(ads) " 

2Br(ads) » Brzfaq)-

The rate determining step involves the discharge of Br" from the solution. 

The anodic formation of Brg proceeds at a faster rate on a reduced Pt 

surface in comparison with an oxidized Pt surface (139), i_.e^., the 

discharge of Br' from the solution occurs at a slower rate than the 

charge transfer from an adsorbed Br" to form an adsorbed Br atom. 

The I-E response of Br" at a Pt electrode has been examined in 

detail by Johnson and Bruckenstein (20). Three anodic waves were 

observed when scanning the potential in the positive direction (Figure 

V-14a). The first anodic wave (A) is attributed to the oxidation of Br" 

to Br2 (Ej, = 0.90 V). The formation of Pt oxide during the positive 

scan of potential is inhibited by the presence of adsorbed Br" and no 

oxide reduction peak was observed until E > 1.0 V. Wave B corresponds 

to the formation of Pt oxide. As E_ was increased beyond 1.0 V, the 
a 

'height of the oxide reduction peak increased and it was concluded that 

surface oxidation is occurring simultaneously with the production of 

HOBr (C). The small reduction peak D observed during the negative scan 



www.manaraa.com

90 

of potential is attributed to the reduction of Brg present in the 

convective-diffusion layer. At higher w and/or lower tp, peak D was not 

observed. The reduction of Pt oxide (E) occurred with = 0.48 V. 

Current-potential curves recorded as a function of w at a low * 

demonstrated that vs. is linear for wave A, i.£., the production 

of Br2 is a mass-transport limited reaction. The height of waves B and 

C increased in a nonlinear fashion with increasing w indicating that 

surface-controlled reactions are occurring or that the kinetics of a 

mass-transport coupled reaction are slow. 

A single anodic wave was observed upon application of QHMV to a 

study of the oxidation of Br" at a Pt electrode (Figure V-14b). In the 

region 1.05 V < E < 1,4 V, the value of AI is the theoretical value 

predicted from the Levich equation. However, at E > 1.4 V, AI decreased 

steadily. The decrease in AI corresponds to an increasing amount of 

surface oxidation. Upon reversal of the potential scan, AL decreased to 

a value less than the AI observed during the positive scan of potential; 

the value of AI is a function of E^. The observed behavior of Brg 

production by QHMV is consistent with the results of mechanistic and 

kinetic studies reported by Rubenstein (139). At a reduced electrode, 

the charge transfer from an adsorbed Br" ion to an adsorbed Br atom 

occurs rapidly and the predicted value of Al^^^ is attained for the 

formation of Brg. However, as the potential increases and the degree 

of surface oxidation increases, the reaction mechanism changes. The 

discharge of Br" from solution is now the rate controlling step which 

proceeds more slowly than the charge transfer step at a reduced 
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electrode. Consequently, mass-transport coupled current is less than 

the predicted Al^.^ value. There was no evidence of the transport-

coupled production of HOBr or BrOg" occurring simultaneously with the 

evolution of Og. Hence, HOBr is generated only by a surface-controlled 

reaction, j_.e^., the oxidative desorption of Br". 

The £0 value for the BrOg'/Br" half reaction in base is 0.37 V. 

An I-E curve was recorded for Br" in 0.1 M NaOH; however, no change in 

the response of current was observed. Nevertheless, QHMV was applied 

to determine if any transport-coupled reaction occurs simultaneously 

with Og evolution. No transport-coupled current was observed in the 

region of Og evolution. 

The anodic reactions occurring at a Au electrode in the presence 

of Br" have not been studied in detail. The formation of Brg is 

thermodynamically predicted to occur with = 0.94 V vs. SCE which is 

close to the values for the formation of the gold-bromo complexes AuBrg 

(Ej, = 0.92 V) and AuBr^" = 0.80 V). Early investigation of the 

oxidation of Br" at a Au electrode by Gaur and Schmid (133) indicated 

that Au is dissolved and passivated in a dilute Br" solution similarly 

to the dissolution and passivation of Au in CI" solutions. However, 

Gaur and Schmid did not consider the possible evolution of Brg until 

E > 1.0 V. More recently, Nicol (129) has reported preliminary results 

for the anodic behavior of Br" at a Au electrode which were obtained by 

cyclic voltammetry at a RRDE. Experiments utilizing a RRDE provide 

additional information about the reactions occurring at the disk 

electrode (1, 141, 142). Soluble electroactive species which are 
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produced at the disk electrode, as well as electroactive species which 

are present in the bulk solution, are transported to the ring electrode 

where they can be detected at a constant potential value (E^). By 

appropriate selection of the value of E^, electroactive species can be 

detected selectively. Current produced at the ring electrode (I^) is 

recorded as a function of the potential of the disk electrode (E^). 

Hence, variations in reflect a change in reactions that are occurring 

at the disk electrode. To study the oxidation of Br" at a Au disk 

electrode, a Au electrode cannot be employed due to interfering 

reactions that occur at the Au electrode at potentials where the species 

of interest are detected. Therefore, a Au disk/Pt ring RRDE was 

utilized. Nicol observed that the quantity of Au(I), Au(III), and Brg 

produced at the anode was dependent upon potential and concentration of 

Br". The proportion of total current consumed in the production of Brg 

decreased with increasing Br" concentration. Therefore, the competing 

reaction, presumably the formation of a gold-bromo complex, is favored 

at higher concentrations of Br". Cadle and Bruckenstein (143) reported 

that the formation of soluble gold(I)-aquo species and gold(III)-aquo 

species occurs upon oxidation and reduction of the Au electrode in the 

absence of electroactive species. Nicol (129) did not specify the Au 

species detected as gold-aquo of gold-bromo species, nor did he report 

the potential region over which each of the Au species was detected. 

"Unfortunately, no detailed report of the anodic behavior of Br" at a Au 

electrode or elucidation of the reaction mechanism has been found in the 

literature. 
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The I-E curve obtained in acidic solution at a Au electrode is 

shown in Figure V-15a. Three anodic waves were observed during the 

positive scan of potential. The production of Brg occurred with the 

thermodynamically predicted value of = 0.94 V (A). Wave B was 

produced upon formation of a gold-bromo complex which was concluded to 

be AuBr^~ which has an E° value slightly more negative than the E° for 

the formation of AuBrg". Peak C consists of current resulting from the 

anodic formation of AugOg and concomitant formation of Brg and AuBr^". 

At E > 1.5 V, Og evolution commences. During the negative scan of 

potential, anodic current decreased rapidly to a small, yet finite, 

value in the region 1.35 V < E < 1.05 V. The reduction of Au oxide (D) 

occurred at = 0.95 V; however, the quantity of oxide formed in the 

presence of Br" is diminished in comparison with the quantity formed in 

the absence of Br". 

A series of I-E curves was recorded as a function of * at a constant 

value of to. The production of Brg (A) was independent of ̂  which is 

characteristic of a mass-transport coupled reaction, whereas, the height 

of peaks B and C varied with (j) indicating that surface-coupled reactions 

are occurring in the potential region of peaks B and C. At high values 

of <j>, peak B was indistinguishable from peak C; hence, the formation of 

AuBr^" is inhibited at high values of *. 

Current-potential curves were recorded also as a function of w 

while holding * constant. All three anodic waves observed during the 

positive scan of potential increased with increasing w. Current due to 

the production of Brg (A) increased in a nonlinear fashion with 
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increasing ui indicating that the formation of Brg proceeds under mixed 

kinetic and convective-diffusion control. In effect, the kinetics of 

the reaction are sufficiently fast to produce the theoretical, transport-

limited current at low values of u; however, at high values of w, the 

rate of Brg production is comparatively slow and, therefore, the 

theoretical limiting current is not observed. At higher values of w, 

peak B owing to the formation of AuBr^' became more prominent and the 

shifted to less positive values. Formation of AuBr^~ occurred more 

readily than the production of Brg as the corrective transport of Br" 

increased. The height of peak C increased with increasing w due to the 

mass-transport coupled formation of Brg and production of AuBr^" 

simultaneously with oxide formation. During the negative scan of 

potential, anodic current observed at E < 1.15 V increased due to the 

production of Brg. The increase in anodic current in the region 1.15 V < 

E < 0.85 V produced an anomalous decrease in the height of the oxide 

reduction peak (D) at higher values of to. 

The AI-E curve recorded for Br" at a Au electrode is shown in 

Figure V-15b. Wave A corresponds to the mass-transport coupled 

production of Brg. In the region 1.2 V < E < 1.3 V, there is an 

unresolvable, finite contribution to AL, as the result of the production 

of AuBr^" which is the kinetically favored reaction at the higher flux 

of Br". At E > 1.3 V, oxide formation commences and the formation of 

"AuBr^" and Brg is inhibited; hence, AL decreased to a small value 

corresponding to the formation of only a small amount of Brg. At ça. 

1.5 V, O2 evolution is initiated and renewed production of Brg was 
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observed. The theoretical was observed in the region 1.7 V < E < 

1.85 V (B). The renewed production of Brg which occurs simultaneously 

with Og evolution (8) resulted from the increased availability of Au 

metal sites. Gold(III) oxide, loosely held at the electrode surface, 

easily flakes off exposing bare Au sites (69-71). Bromide oxidation, 

as well as Og evolution and continued formation of AUgOg, can occur at 

the exposed Au sites (70-72). Upon reversal of the potential scan, AL 

decreased and a minimum value was attained in the region 1.4 V > E > 

1.2 V. At E < 1.2 V, AL increased owing to the production of Brg. No 

AuBr^" was formed during the negative scan of potential. As the concen­

tration of Br" was increased, the ratio Al^/Alg decreased indicating 

that the production of Brg, in the region 0.9 V < E < 1.2 V, decreased 

and the formation of AuBr^' increased as the concentration of Br" 

increased. The transport-limited production of Brg (B) was attained 

regardless of the Br" concentration since the formation of AuBr^" is 

not a competing reaction at E > 1.7 V. 

6. Hydroquinone 

The oxidation of hydroquinone (HQ) on Pt and Au does not involve 

0-atom transfer; nevertheless, a brief discussion of the anodic behavior 

of HQ is included because of the interesting results which were obtained, 

in particular, at a Au electrode. The adsorption of numerous aromatic 

compounds at Pt electrodes has been investigated utilizing thin-layer 

electrochemical techniques (144-148). The results demonstrated that 

aromatic molecules adsorb in specific molecular orientations. The 

molecular orientation is a function of the structure and the concen­
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tration of the adsorbate, the strength of adsorption of the supporting 

electrolyte, and the pH of the solution. At millimolar concentrations 

in aqueous 0.1 M HCIO^, HQ adsorbs with the plane of the ring parallel 

_3 
to the electrode surface. At concentrations exceeding 10" M, HQ adsorbs 

with an edgewise orientation. 

Hydroquinone adsorbs irreversibly on Pt (144, 148, 149) and is not 

removed upon rinsing with a HQ-free electrolyte solution. Oxidative 

desorption of the chemisorbed species occurs at E > 0.6 V. Complete 

conversion to COg occurs if HQ is adsorbed in the parallel orientation 

whereas, if HQ is adsorbed in an edgewise manner, complete conversion to 

COg does not occur. Minimal oxidation of the Pt surface occurs prior to 

the complete oxidative desorption of adsorbed HQ (150). Soriaga and 

Hubbard (151) concluded that Pt is ultimately oxidized to the same 

extent regardless of whether HQ had been previously adsorbed based on 

the observation that the area of the oxide reduction peaks is equal in 

the absence or presence of HQ. Adsorbed HQ suppresses the underpotential 

deposition of H in the region 0.15 V < E < -0.2 V (152). The adsorption 

of aromatic molecules is sufficiently strong to displace adsorbed HQ 

(145). Recently, Soriaga e;t (153) have examined the effects of 

halogens upon the adsorption of HQ. They observed that I" quantitatively 

displaced HQ, on the other hand, HQ did not displace adsorbed I. 

Bromide and CI" displace HQ to some extent (Br" > CI") whereas adsorbed 

-HQ is uneffected by F~. The oxidation of unadsorbed HQ has been observed 

to occur reversibly at a Pt electrode at E > 0.45 V vs. SCE (151). 

The I-E curve obtained for HQ in 0.5 M HgSO^ at a Pt electrode is 
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shown in Figure V-16a. An anodic wave (A) was observed for the oxidation 

of HQ to quinone (Q) at the thermodynamically predicted value E, = 0.46 V 

vs. SCE during the positive sweep of potential. The formation of Pt 

oxide was inhibited by the presence of adsorbed HQ. Wave B, observed at 

E > 0.7 V, consists of current produced as the result of the oxidation of 

adsorbed HQ and that which is transported to the electrode surface. At 

E > 0.9 V, the anodic formation of Pt oxide occurred concomitantly with 

the anodic reactions of HQ. Upon reversal of the potential scan, an 

anodic current plateau (C) was observed in the region 1.2 V > E > 0.8 V 

for the oxidation of unadsorbed HQ. Reduction of Pt oxide occurred at 

Ep = 0.45 V. The characteristic H adsorption and H desorption peaks were 

not observed in the H region (0.1 V < E < -0.2 V) owing to the presence 

of adsorbed HQ which suppresses the underpotential deposition of adsorbed 

H. 

A series of I-E curves were recorded as a function of * at a 

constant value of co. After correcting for double-layer charging current, 

the anodic current produced upon oxidation of unadsorbed HQ (A) was 

independent of <{) which is indicative of a mass-transport controlled 

reaction. Current in the region of peak B was dependent upon (j). The 

variation in current with changes in cj) is attributed to the surface-

controlled reactions which occur at E > 0.7 V, i_.e^., the oxidation of 

adsorbed HQ and the oxidation of Pt. The current plateau (C) observed 

-during the negative scan of potential was independent of which is 

characteristic of a convective-controlled reaction. 

Current-potential curves were recorded at a constant value of * 
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Figure V-16: I-E and AI-E curves of 0.5 mM hydroquinone in 

0.5 M HgSO^ at a Pt RDE 

a. I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

b. AI-E curve 

Lower rotation speed (W-j): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 150 ms 

Number of data points (N): 10 
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while varying w. Both anodic waves observed during the positive scan of 

potential were a function of w indicating that the transport-dependent 

oxidation of HQ is occurring in the region 0.46 V < E < 1.3 V. During 

the negative scan of potential, the magnitude of the current plateau (C), 

observed in the region 1.2 V > E > 0.8 V, increased linearly with w 

The aI-E curve recorded for HQ at a Pt electrode is shown in Figure 

V-16b. A AL plateau was observed in the region 0.6 V < E < 1.65 V 

during the anodic scan of potential corresponding to the transport-

coupled oxidation of HQ. Upon reversal of the potential scan at E^ = 

1.65 V, an anodic AI plateau was observed in the region 1.65 V > E > 

1.05 V. However, at E < 1.05 V, AL decreased to zero at ca_. 0.6 V. 

The difference between the E, for the anodic wave observed during the 

positive scan of potential and the observed for the anodic wave 

during the negative scan decreased as the potential scan was reversed 

at successively less positive values of E^. For E^ < 0.9 V, the Ej^ 

values are equal for the two scan directions. No oxide formation 

occurred at E < 0.9 V, therefore, the observed irreversibility of HQ 

oxidation during the negative scan of potential is attributed to the 

presence of Pt oxide. The oxidation of HQ proceeded at a limiting 

value during the negative scan of potential provided that n was 

sufficiently large. 

In sharp contrast to the numerous investigations of the adsorption 

-and oxidation of HQ on Pt, the characterization of the adsorption and 

anodic behavior of HQ on Au has not been described in the literature. 

The I-E curve recorded for HQ at a Au electrode is shown in Figure 
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V-17a. The oxidation of HQ to Q proceeded with the thermodynamicany 

predicted value = 0.46 V producing an anodic current plateau (A) in 

the region 0.55 V < E < 1.05 V. The small peak (B) observed prior to 

the establishment of the limiting current plateau is attributed to the 

slow depletion of species in the diffusion layer. At E > 1.05 V, 

formation of Au oxide occurred simultaneously with the anodic oxidation 

of HQ. The formation of oxide was not inhibited in the presence of HQ 

nor does the formation of oxide exhibit an inhibitory effect on the 

oxidation of HQ. During the negative scan of potential, anodic current 

owing to the oxidation of HQ was observed in the region 1.6 V > E > 0.46 

V. The reduction of Au oxide occurred at E^ = 0.88 V concurrently with 

the oxidation of HQ. 

Current-potential curves were recorded as a function of ̂  while 

holding w constant. The magnitude of the anodic current plateau (A), 

corresponding to the oxidation of HQ, was independent of * after 

correcting for double-layer charging current. This behavior is 

indicative of a mass-transport controlled process. At low values of *, 

peak B was not observed since the sufficient time elapsed at that scan 

rate for the depletion of species in the diffusion layer to occur during 

the rising portion of the oxidation wave. Current due to the formation 

of Au oxide and the reduction of Au oxide varied with ij), which is 

characteristic of surface-controlled processes. Variation of w at a 

"constant value of ({> demonstrated that the anodic plateau current 

increased nonlinearly with w^. Since no surface-controlled reactions 

occurred simultaneously with HQ oxidation in the region 0.46 V < E < 
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Figure V-17: I-E and AI-E curves of 0.5 mM hydroquinone in 

0.5 M HgSO^ at a Au RDE 

a. I-E curve 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (4): 6 V/min 

b. Al-E curve 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 150 ms 

Number of data points (N): 10 
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1.05 V, it was concluded that the kinetics for the anodic oxidation of 

HQ at a Au electrode are the controlling factor at large w. 

The anodic oxidation of HQ at a Au electrode was investigated 

further by application of QHMV. For < 1.8 V, a reversible anodic 

wave was observed for the mass-transport coupled oxidation of HQ. The 

AI-E curve obtained for = 1.85 V is shown in Figure V-17b. An anodic 

current plateau was observed during the positive scan of potential; 

however, upon reversal of the potential scan direction, AI decreased 

linearly in the region 1.85 V > E > 0.9 V at a rate of 31.2 yA/V. At 

E < 0.9 V, Au oxide was reduced and AI rapidly increased to the anodic 

value observed during the positive scan of potential. The linear 

decrease in AI in the region 1.85 V > E > 0.9 V may be attributed to a 

change in the properties of the oxide-covered Au electrode upon 

anodization at E > 1.8 V. Kim et (68) reported that a highly-

hydrated oxide AutOH)^ is formed at E > 1.8 V. Perhaps the formation 

of AufOHjg forms a protective layer over the existing oxide; hence, 

less AugOg flakes off of the electrode surface. Since AugOg is known 

to be a poor electronic conductor, an ohmic drop may occur across the 

layer of AugOg. It is also possible that by decreasing the amount of 

AUgO^ which flakes from electrode surface, the number of available 

oxide-free Au sites decreases; hence, the observed value of AI decreases. 

Cadle and Bruckenstein (143) have observed that anodization of a Au 

"electrode at E > 1.8 V increases the surface roughness of the electrode. 

A two-fold increase in the roughness factor was observed upon potentio-

stating the electrode at E = 1.9 V for 2 min; whereas, no increase in 
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the roughness factor was observed upon potentiostating the electrode at 

E = 1.7 V for as long as an hour even though Au dissolution occurred at 

E = 1.7 V. The rate of Au dissolution increased at E > 1.8 V which 

corresponds to the potential at which Au(OH)2 formation commences. 

Cadle and Bruckenstein concluded that the rate of dissolution, not the 

quantity of Au dissolved, controls the extent of roughening. The 

oxidation of HQ may be sterically hindered at a Au electrode roughened 

at the atomic level. Another possible explanation is that the reaction 

may be kinetically slower at an electrode which has been anodized at 

E > 1.8 V until the oxide layer is reduced from the electrode surface. 

Further investigation of this phenomenon may provide novel information 

about the oxide which forms on Au at E > 1.8 V. 

D. Summary 

In this section, data obtained by CV and QHMV has been presented for 

several analyte/electrode combinations. The results demonstrate the 

complementary nature of the two techniques. The ability of QHMV to 

extract the mass-transport coupled current from the total current 

produced in the potential region of Og evolution has proven to be the 

most informative attribute of QHMV. Tables V-2 and V-3 summarize the 

results obtained by QHMV for the anodic reactions discussed. Table V-4 

summarizes the results obtained by QHMV at a Pt electrode for other 

-reactions briefly examined but not discussed here. 



www.manaraa.com

106 

Table V-2. Mass-transport dependent reactions observed by QHMV 
simultaneously with Og evolution 

Reaction Electrode Material 

Pt Au Pd Ir 

As(III)—^ As(V) mtc mtc 

I'—> lOj" mtl mtl mtc mtc 

Br'—^ Br 2 mtc mtl 

CI'—> CI2 mtc nc - -

NOg'—> NOg' nc mtc 

HQ—^ Q mtl mtl 

mtc mass-transport coupled current was observed 

mtl mass-transport limited current was observed 

nc no coupling of the reaction to mass-transport was observed 

reaction was not studied 



www.manaraa.com

107 

Table V-3. General trends of electrocatalysis observed for mass-
transport coupled reactions 

Reaction Electrode Material 

Pt Au Pd Ir 

As(III)—> As(V) 1 1 

r-^103- 1 1 

Br"—> Brg 4 2 

Cr^ CI 2 2 4 

NOG"--» NOG" 3 1 

HQ-» Q 4 4 

1 catalyzed by lower oxide, inhibited by higher oxide, 
catalyzed during Og evolution 

2 catalyzed only during Og evolution 

3 catalyzed by lower oxide, inhibited by higher oxide, not 
catalyzed during Og evolution 

4 the mass-transport coupled reaction does not involve 
electrocatalysis 

reaction was not studied 
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Table V-4. Mass-transport dependent reactions observed by QHMV 
occurring simultaneously with Og evolution at a Pt 
electrode 

Reaction 
Electrode Material 

Pt 

Ce(III)-^ Ce(IV) 1 

Cr(III)—^ Cr(VI) 3 

Mn(II)—>Mn(III) 

or 2 

Mn(II)—>Mn(VII) 

Sb(III)—>Sb(V) 3 

Se(IV)-^Se(VI) 3 

Sn(II)-^Sn(IV) 3 

V(III)-^V{V) 1 

1 mass-transport limited reaction occurring simultaneously 
with Og 

2 mass-transport coupled reaction occurring simultaneously 
with Og evolution 

3 no mass-transport coupled reaction observed 
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VI. THE ANODIC OXIDATION OF IODIDE IN ACIDIC MEDIA 

AT A Pt ELECTRODE 

A. Literature Review 

The survey of anodic reactions utilizing CV and QHMV demonstrated 

the complimentary nature of the two techniques and illustrated that 

QHMV is an invaluable technique for the study of mass-transport coupled 

reactions that are occurring simultaneously with surface oxidation and 

Og evolution. Of particular interest are the results obtained for the 

oxidation of I" at a Pt electrode in acidic media. The following 

observations promoted further study of the oxidation of I" which 

involves the uptake of 0 atoms: 1) The surface-coupled, oxidative 

desorption of I to lOg" is initiated at the potential where PtOH 

formation commences. 2) The transport-coupled oxidation of I' to lOg" 

proceeds concomitantly with the formation of PtOH. 3) The transport-

limited production of lOg" occurs simultaneously with Og evolution. 

Iodide is strongly adsorbed on an oxide-free Pt surface with 

complete loss of the negative charge (16, 104, 122). Adsorption of 

I" as 1° is irreversible and desorption does not occur upon thorough 

rinsing with I~-free solutions. The maximum coverage by I atoms was 

observed to be ca. 0 = 0.5 (16), implying one adsorbed I per two Pt 

surface atoms. Lane and Hubbard (16) suggested that the adsorption 

-of I" proceeds through the formation of dissociated HI. However, 

based on the results of recent studies utilizing low energy electron 

diffraction (LEED), Auger electron spectroscopy (AES), and thermal 
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desorption mass spectrometry (TDMS), it has been concluded that the 

adsorption of I" on Pt is limited only by the size of the I atom (154, 

155). Felter and Hubbard (154) examined the adsorption of gaseous Ig 

on Pt(lOO) and Pt(lll) single crystals. They concluded that Ig 

dissociatively adsorbs to form a hexagonal or near-hexagonal lattice 

with a maximum coverage of 0 = 0.56. The adsorption of gaseous HI on 

Pt(lOO) and Pt(lll) single crystals has been investigated by Garwood 

and Hubbard (155). The maximum coverage by I atoms on Pt(lll) is 6 = 

0.43; whereas a maximum coverage of e = 0.54 is attained on Pt(lOO). 

For 9 < 0.50, at either Pt(lll) or Pt(lOO), I atoms are desorbed 

exclusively. However, at Pt(lOO), HI is desorbed exclusively in the 

transition from e = 0.54 to 0 = 0.50; hence, adsorption in excess of 

0 = 0.50 occurs as HI. The stability of the Pt-I adsorption bond was 

demonstrated by the high temperature required for desorption to occur 

in vacuum. Thermal desorption of I from Pt(lll) produced a peak at 

735 K followed by a broad maximum for temperatures of 800-1000 K. 

At Pt(lOO), the transition from 0 = 0.54 to 0 = 0.50 produced a 

desorption peak at 620 K corresponding to the desorption of HI which 

is more weakly bonded than I atoms. Two desorption peaks were observed 

at temperatures of 735 K and 980 K, as the result of the desorption of 

1 atoms from Pt(lOO). The contrasting thermal desorption behavior of 

I atoms from Pt(lll) and Pt(lOO) parallels the dissimilar reactivity of 

'these surfaces toward electrochemical oxidative desorption. Current-

potential curves were recorded for the oxidative desorption of I which 

was deposited under vacuum on Pt(lll) and Pt(lOO) single crystals. 
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The oxidative desorption of I from Pt(lll) produced a single peak, 

whereas the oxidative desorption from Pt(lOO) produced two anodic peaks. 

Comparison of the I-E curve obtained for the oxidative desorption of I 

from Pt(lOO) deposited under vacuum with that for deposition from an 

aqueous solution indicated that the peak occurring at the more positive 

potential is unique to the adsorbed layer produced under vacuum. The 

differences in reactivity of adsorbed I are being investigated further 

by Felter and Hubbard (154), 

The effects of adsorbed I upon the anodic formation of surface 

oxide and the underpotential deposition of H have been studied in 

detail (53, 104, 121, 122) and are illustrated in Figure VI-1. 

Adsorbed I suppresses the anodic formation of surface oxide on Pt 

nonselectively over the region 0.55 V < E < 1.0 V. However, at E > 

1.0 V, adsorbed I is removed from the electrode surface by oxidative 

desorption to lO^" with concurrent formation of surface oxide. No I 

adsorbs on an oxide-covered Pt surface (12, 17). Unlike adsorbed Br~ 

and CI", adsorbed I alters the quantity of H adsorbed in the region 

0.1 V > E > -0.2 V; hence, the current observed progressively diminishes 

as the concentration of I" increases in the solution. 

Iodine atoms adsorbed on a Pt surface influence the rate of many 

electrochemical reactions (14, 156-158). Upon adsorption of I, the 

electrostatic charge distribution of the solution-electrode interface 

'is altered. Oppositely charged reactants are attracted to the diffuse 

layer, thus facilitating their reaction; whereas, the reaction of like-

charged species is not facilitated by adsorbed I on a Pt surface. The 
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Figure VI-1: I-E curves of I" in 0.5 M HgSO^ at a Pt RDE as a 

function of I" concentration 

Electrode rotation speed (W): 400 rpm 

Potential scan rate (*): 4 V/min 

0.0 yM r 

1.1 yM I" 

3.1 yM r 
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following examples illustrate the affect which I adsorbed on a Pt 

substrate exhibits on several electrochemical reactions: 1) Adsorbed I 

accelerates the reaction of anionic Pt(II) complexes, , PtCl^ 

(156). On the other hand, deceleration of the reaction of cationic Pt 
2+ 

complexes, e.£., PtfNHg)^ (156) occurs, as expected from electrostatic 

considerations. 2) The oxidation of Sb(III) in acidic Cl~ media is 

irreversible at a Pt electrode; however, upon pretreating the electrode 

with I, the oxidation of Sb(III) is reversible (157). 3) The in vivo 

voltammetric detection of catecholamines can be achieved without 

interference from oxide formation at a Pt electrode pretreated with I" 

(14). In the absence of adsorbed I, no oxidation peak is discernible 

for the catecholamines. 4) The reduction of Cr(VI), which is irrevers­

ible at a Pt electrode untreated with I, is reversible at a Pt electrode 

on which I is adsorbed (158). 

The anodic behavior of I" on Pt in acidic media has been described 

previously (11, 12, 17, 101). The first step in the oxidation of I" is 

the production of Ig. The mechanism of this reaction, as proposed by 

Newson and Riddiford (159), Jordan and Javick (160, 161), and Dane et al. 

(162), involves the adsorption of I". A more recent investigation by 

Osteryoung and Anson (11) indicated that the mechanism of Ig formation 

does not require adsorbed I, , when occurring at an oxide-covered 

electrode. However, they did not postulate specific mechanisms for the 

'formation of Ig at oxide-free or oxide-covered electrodes. The product 

of further oxidation of I" is lO^" (12, 101, 163). Zakharov and Songina 

(101) concluded that the oxidation of I" to lO^" takes place by the 
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direct participation of 0 atoms of the surface oxide of Pt as indicated 

schematically by 

Pt0[0]^ + r > Pt0[0]^_3 + IO3" + 6e" 

No other mechanism has been reported in the literature. 

A. Voltammetric Studies 

1. Cyclic voltammetry 

An I-E curve for 0.5 mM I" in 0.5 M HgSO^ is shown in Figure VI-2, 

During the positive scan of potential, I" is oxidized to Ig (E^ = 0.48 V) 

to yield an anodic wave (A) with a limiting current plateau in the region 

0.55 V < E < 0.95 V. Peak B, observed at E > 0.95 V, is the result of 

the production of lO^" and surface oxide. A significant part of the lOg" 

produced has been concluded to originate from adsorbed I with oxidative 

desorption occurring simultaneously with the anodic formation of surface 

oxide (12, 17). A limiting current plateau was not attained for the 

production of IO3" in the region of peak B; apparently, the production 

of IO3" is inhibited by the rapid conversion of the lower oxide (PtOH) 

to the higher oxide (PtO) in the potential region of peak B. At E > 

1.3 V, the large current resulting from the anodic decomposition of the 

solvent to produce Og serves as a practical limit for the positive scan 

of potential. Two cathodic peaks were observed during the subsequent 

negative scan of potential. Peak C at Ep = 0.45 V is the result of the 

reduction of the surface oxide formed during the positive scan for E > 

1.0 V. The electrochemical reduction of Ig irreversibly adsorbed at 
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Figure VI-2: I-E curve of 0.5 mM I" in 0.5 M HgSO^ 

at a Pt ROE 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 
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the surface produces peak D at 0.0 V (17). 

Current-potential curves were recorded as a function of * for a 

constant value of to. The height of peak B varied with changes in ^ as 

expected for a surface-controlled process. The faradaic signal corre­

sponding to the oxidation of I' to Ig (A) was independent of ̂  which is 

the typical behavior of a transport-controlled reaction. The I-E curves 

obtained at a single value of (p, while varying w, demonstrated that the 

electrode current for both anodic reactions (A and B) increased as w was 

increased. The oxidation of I" to Ig (A) is a mass-transport limited 

reaction, j..£., a plot of vs. is linear. The height of peak B 

varied nonlinearly with since peak B consists of currents resulting 

from the formation of surface oxide and the anodic production of lOg" 

from I surface-controlled reactions), in addition to any 

transport-coupled oxidation of I" from the bulk solution. 

A series of I-E curves was recorded as a function of (Figure 

VI-3). The anodic formation of surface oxide does not occur for E^ -

1.0 V, because of the presence of adsorbed I. The reduction peak 

observed during the negative scan for ^ 1.0 V (A) is attributed to 

the reduction of reversibly adsorbed Ig. For E^ = 1.1 V, formation of 

PtOH proceeds with a minimal amount of place exchange to give OHPt or 

further oxidation to PtO. Therefore, upon reversal of the potential 

scan, PtOH is available to catalyze the oxidation of I" to lOg". The 

'E^ observed for the formation of lOg" during the negative scan of 

potential is 35 mV more negative than the E^ observed for this reaction 

during the preceding positive scan of potential. In a thermodynamic 
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Figure VI-3: I-E curves of 0.5 mM I in 0.5 M HgSO^ at a Pt RDE 

as a function of E^ 
a 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

1.0 V 

1.1 V 

1.2 V 
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sense, the oxidation reaction is more reversible in the presence of a 

small amount of surface oxide, specifically PtOH. At - 1.2 V, an 

anodic peak (B) was attained for the oxidation of I" to lO^" during the 

positive scan of potential. The anodic formation of 10^' did not occur 

during the negative scan of potential for - 1.2 V because of the 

presence of OHPt and PtO on the electrode surface which do not catalyze 

the reaction. 

The transition between reversibly adsorbed Ig and irreversibly 

adsorbed Ig was observed by close examination of the reduction reactions 

occurring in the region 0.7 V > E > -0.22 V (Figure VI-4). Peak A at 

Ep = 0.45 V corresponds to the reduction of reversibly adsorbed Ig (17). 

As long as E^ < 1.02 V, i-e^., no oxide formation occurred, only peak A 

was observed. However, for E, > 1.02 V, a reduction peak at E_ = 0.0 V a p 

was produced which is attributed to the reduction of irreversibly 

adsorbed Ig (17). The height of peak B, i..£., the amount of irreversibly 

adsorbed Ig, increased to a constant value as E^ became more positive. 

Hence, the Ig, once reversibly adsorbed, is converted to irreversibly 

adsorbed Ig as Pt oxide is formed on the electrode (17). The change in 

the height of peak A was obscured by the overlapping oxide reduction 

peak. 

2. Square-wave hydrodynamically modulated voltammetry 

The investigation of the transport-coupled process of lOg" 

formation required the measurement of the convective component of the 

total current, as can be achieved by QHMV. The production of 10^" by 

oxidative desorption of adsorbed I does not contribute to the AI signal. 
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Figure VI-4: I-E curves of 0.5 mM I" in 0.5 M HgSO^ at a Pt RDE 

as a function of E^ 
a 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 

1.0 V 

1.1 V 

1.2 V 
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a. Staircase potential waveform The electrochemical response 

of I" at a Pt electrode was characterized by QHMV utilizing the staircase 

potential waveform illustrated in Figure IV-1. The resultant AI-E curve 

is shown in Figure VI-5. The reaction I" > + e~ occurred with 

the thermodynamically predicted value of E^ = 0.48 V and the transport-

limited current was observed in the region 0.55 V < E < 0.95 V (A). The 

value of AI (67 pA) corresponds closely to the theoretical value (69 uA) 

predicted from the linear Levich plot (I vs. constructed for this 

anodic process from data obtained by cyclic voltammetry. Peak B at ca. 

1.05 V corresponds to the oxidation of I~ transported from the bulk 

solution to lOg". The height of peak B was significantly less than the 

transport-limited value predicted for this reaction (i.£., 6*69 iiA); 

however, AI is greater than the value expected for the transport-limited 

oxidation of I" to HIO (i..£., 2*69 yA). The appearance of a peak signal 

for the oxidation of I" to lO^" can be explained on the basis of the 

catalytic properties of the surface oxide. Oxidation of I" to 10^" is 

thermodynamically allowed in this solution for E > 0.84 V; however, the 

reaction was not observed to occur until E > 1.0 M, corresponding to the 

onset of the formation of surface oxide. It was concluded that the 

production of lOg" from I", as well as adsorbed I, is initiated by the 

generation of PtOH as the first step in the formation of the surface 

oxide (PtO). Unfortunately, the adsorbed I suppresses the onset of 

-oxide formation (see Figure VI-1); hence, the potential range is quite 

narrow over which the production of 10^' is thermodynamically allowed, 

and in which PtOH exists in an appreciable quantity at the electrode 
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Figure VI-5: Al-E curve of 0.5 mM I~ in 0.5 M HgSO^ 

at a Pt RDE 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (t^): 150 ms 

Number of data points (N): 10 
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surface. Rearrangement of PtOH to the catalytically inactive OHPt, and 

further oxidation to PtO, occur rapidly for E > 1.2 V and the production 

of lOg" is suppressed sharply. As the potential increased beyond 1.3 V, 

AL increased to a limiting current plateau for E > 1.5 V (C) and is 

attributed to the production of lOg". The ratio of AL for the two 

limiting values of current for waves C and A (al^/Al^) is 6.0 as expected 

on the basis of the assigned reactions. The renewed formation of lOg" 

occurring concomitantly with Og evolution is attributed to the catalytic 

involvement of the OH radical generated on the PtO surface as the first 

step in the production of Og. In addition, the evolution of Og involves 

the abstraction of 0-atoms in the oxide film (54, 56); therefore, when 

Og molecules leave the surface of the electrode, the oxide must be 

reformed. Since the formation of oxide involves OH radicals as an 

intermediate product, there is an abundance of OH radicals present on 

the electrode surface during Og evolution which exhibit an electro-

catalytic effect on lOg" formation. Upon reversal of the potential scan, 

the transport-limited production of 10^" proceeded as long as Og was 

evolved. At E < 1.3 V, only the oxidation of I" to Ig occurred, since 

virtually no PtOH is generated during the negative scan of potential. 

These results are consistent with the conclusion that the oxidation of 

I' to lOg" requires the electrocatalytic benefit of the OH radical, 

whether adsorbed on the metal surface (PtOH) or the oxide (PtOOH). 

b. Triple-step potential waveform QHMV was applied utilizing 

the triple-step potential waveform illustrated in Figure IV-2. The 

potential waveform consisted of an initial potential value (E^) which 
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resulted in the reduction of PtOH and PtO on the electrode surface, an 

oxidizing potential (Eg) for which surface oxidation was initiated, and 

a sampling potential (Eg < Eg) at which the faradaic signal was measured. 

This particular sequence of potential values effectively "freezes" the 

oxide layer, for the sampling period, in the state which is character­

istic of the oxide formed at Eg for the time period tg. For a small 

value of tg (£.£., 50 ms), production of the catalytically active oxide 

(PtOH) is maximized with relatively little conversion to the less active 

OHPt and PtO. The driving force for the formation of additional oxide 

no longer exists at E < Eg; therefore, anodic reactions which occur will 

tend to be characteristic of the catalytic activity of the oxide formed 

at Eg. It should be noted that catalytically active PtOH generated at 

Eg will undergo conversion to the inactive OHPt at E^ < Eg. Since PtOH 

is not reduced until E < 0.7 V, use of this waveform results in the 

availability of PtOH produced at the electrode surface for a limited 

time during the sampling period with Eg > 0.7 V. The results for Eg = 

1.1 V, 1.2 V, and 1.6 V are shown in Figure VI-6. The oxidation of I" 

to Ig (A) for 0.45 V < E < 0.95 V proceeded regardless of the value of 

Eg, i.£., the formation of Ig is not inhibited by the presence of 

surface oxide. As Eg was increased from 1.1 V to 1.2 V, the value of 

AL in the region of peak B decreased significantly and the E^ of the 

wave shifted 25 mV in the positive direction; these changes demonstrate 

-that the formation of OHPt and PtO is more irreversible than the 

formation of PtOH at less positive potentials. Current in the region of 

peak B continued to decrease as Eg was increased and the E^ of the 
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Figure VI-6: AL-Eg curve of 0.5 mM I" in 0.5 M HgSO^ at a Pt RDE 

utilizing the triple-step potential waveform illustrated 

in Figure IV-2 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 20 mV 

Number of data points (N): 50 

Ej = 0.0 V tj = 250 ms 

Eg = variable tg = 200 ms 

values of Eg (tg = 200 ms) were as follows: 

. 1.10 V 

X 1.20 V 

+ 1.60 V 
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reactions shifted to more positive values. However, values of aI, 

obtained for 1.3 V < E < 1.6 V (C), correspond to the limiting current 

for the oxidation of I~ to lOg". The ratio of aI for the two limiting 

currents (AI^/AI^) is 6.0. 

The time dependence for conversion of active PtOH to the inactive 

OHPt and PtO is illustrated by plots of aI as a function of tg for 

several values of Eg in the range 1.1 V < E < 1.6 V (Figure VI-7). For 

Eg = 1.1 V, Al was essentially constant throughout the range of values 

of tg tested. For Eg = 1.2 V, the catalytic activity of the electrode 

surface, as measured by AI, decreased with increasing tg, approaching 

the limiting value for the oxidation of I" to Ig observed for tg > ca^. 

400 ms. For Eg - 1.3 V, AI corresponded approximately to the transport-

limited value for the oxidation of I~ to Ig at all values of tg. 

3. Sumary 

The oxidative reactions of I" in acidic media at a Pt electrode 

were examined in detail. The convective components of the total 

electrode current include: 1) the mass-transport limited formation of 

Ig at E > 0.45 V; 2) the mass-transport coupled oxidation of I" to lOg", 

which is catalyzed by the anodic formation of PtOH; and 3) the mass-

transport limited production of lOg", which is concluded to be electro-

catalyzed by OH, an intermediate product of Og evolution. Observation 

of the latter two components was possible only upon application of QHMV. 
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Figure VI-7: Plots of Al vs. tg as a function of Eg for 0.5 mM I 

in 0.5 M HgSO^ at a Pt RDE 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Number of data points (N): 10 

Ej = 0.00 V tj = 250 ms 

Eg = variable tg = variable 

Eg = 1.05 V tg = 20 ms 
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C. Flow Injection Detection 

Constant potential amperometry is applicable for the detection of 

numerous electroactive species; however, the loss of electrode activity 

at noble metal electrodes frequently is observed. The loss of electrode 

activity can be attributed to 1) the formation of a passivating oxide or 

2) fouling of the electrode surface by residual products which remain 

strongly adsorbed on the electrode surface. In either case, continued 

oxidation of the analyte is inhibited and the analytical signal rapidly 

diminishes. Amperometric detection utilizing a stepped potential 

waveform has been developed which leads to greater stability of the 

electrochemical response. Results obtained by application of a double-

step potential waveform have been reported (164-167), noting the 

observed increase in stability of the electrochemical response. 

However, recently, triple-step amperometric detection has received much 

attention (168-173) particularly for the anodic detection of organic 

compounds, e^.£.» alcohols (168), carbohydrates (169-172), amino acids 

(171, 173), and sulfur-containing organic compounds (173). Triple-step 

amperometry utilizes a potential waveform which incorporates voltammetric 

cleaning and reactivation of the electrode surface together with the 

amperometric measurement. Reproducible electrode activity is achieved 

during each cycle of the potential waveform, therefore, the value of 

current measured for a given concentration of analyte is constant. 

Amperometric detection of compounds, whose oxidation is catalyzed 

by anodic formation of PtOH, is greatly enhanced through the application 
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of triple-step amperometry. The electrocatalyzed response is short­

lived due to the transient lifetime of PtOH. Therefore, by application 

of a triple-step potential waveform, the surface is reproducibly 

regenerated and current is measured when the electrocatalyzed response 

is near its maximum value. The amperometric detection of I" was 

examined utilizing single (dc) and multi-step potential waveforms to 

illustrate the enhanced sensitivity of the measured signal in the 

potential region where the electrocatalyzed oxidation of I" to lOg" 

occurs. 

The response of electrode current to a step change in potential 

will be considered in general terms so that the choice of the multi-

step potential waveform and the observed analytical signal for specific 

reactions are more easily understood. In all instances, the contribu­

tion of double-layer charging current is ignored for simplicity. 

The Cottrell equation, I = nFAD^^/ir^^, describes the response of 

current as a function of time following a step in potential under the 

condition of no convection. The observed electrode current approaches 

zero as time approaches infinity (Figure VI-8-A). If the potential is 

stepped to a region where a mass-transport limited reaction occurs, the 

Cottrell equation is valid at short t, regardless of the geometric shape 

of the electrode or the existence and nature of convection. However, 

for long t, current deviates from the Cottrell equation and approaches 

-a steady state value which is a function of the geometry of the 

electrode and the rate of convection (Figure VI-8-B). At a rotating 

disk electrode, the magnitude of the steady-state current is described 
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Cottrell 
region 

• I  
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Figure VI-8: Expected anodic response following a 
positive potential step into a region 
where a transport-limited reaction is 
occurring. [A-no convection. B-with 
convection.] 

by the Levich equation and is independent of time. 

When the potential is stepped to a region where surface oxide 

formation is the only faradaic reaction occurring, current decays 

according to the equation 1^^ = cn/t where n is the applied overpoten-

tial, t is time, and c is a constant (174, 175) (Figure VI-9-A). In the 

presence of an irreversibly adsorbed, electroinactive species, is 

decreased at all values of t (Figure VI-9-B). 

If a change in applied potential results in the desorption of an 

electroinactive species concomitantly with formation of oxide, the value 

of IQ^ is decreased significantly at small t. However, at longer t. 
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Figure VI-9: Expected anodic response following a 
positive potential step into a region 
where oxide formation occurs. [A-oxide 
formation in the absence of analyte, 
8. = 0. B-oxide formation in the 
presence of an irreversibly adsorbed 
analyte 6^ = O.5.] 

current is larger than the value of 1^^ observed in the absence of an 

adsorbed species, since the total charge passed for oxide formation 

over an extended period of time must be virtually the same regardless 

of the initial coverage by an electroinactive species. The I-t response 

for this case is shown in Figure VI-10. 

Oxidative desorption of an electroactive adsorbate by a process 

electrocatalyzed by the formation of surface oxide produces a I-t 

curve shown in Figure VI-11. Current is inhibited at short t for 0 > 0 

but enhancement of the current is observed at longer t. The total 
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Figure VI-10: Expected anodic response following a 
positive potential step into a region 
where oxide formation occurs. [A-oxide 
formation in the absence of analyte, 
0» = 0. B-oxide formation in the 
presence of reversibly adsorbed 
analyte, 0^ = O.5.] 

charge passed upon electro-oxidative desorption over a long time period 

will exceed the charge passed for the formation of oxide because of the 

faradaic reaction of the analyte. 

The magnitude of the current and the direction of deflection of the 

signal in relation to the baseline for pulsed amperometric detection is 

dependent upon the processes occurring at the sampling potential and the 

value of t selected for measurement of I. Analytical application 

utilizing any of the responses is feasible provided that the electrode 

surface is reproducibly regenerated during each cycle of the applied 
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Figure VI-11; Expected anodic response following a 
positive potential step into a region 
where oxide formation occurs. [A-oxide 
formation in the absence of analyte, 
8. = 0. B-oxide formation and 
concurrent oxidative desorption of the 
analyte, = O.5.] 

waveform. Tailing of peaks is observed if the adsorbate is not 

completely removed from the electrode surface during the cleaning steps 

in the waveform. 

The amperometric detection of I" at a Pt electrode was investigated 

taking advantage of the following characteristics of the electrochemical 

response of I": 1) I~ is oxidized to Ig by a mass-transport limited 

reaction in the region 0.55 V < E < 0.95 V; 2) I" is strongly adsorbed 

on a reduced Pt surface, consequently, anodic formation of surface 

oxide is suppressed in the region 0.55 V < E < 1.0 V; and 3) adsorbed I 
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is oxidatively desorbed at E > 1.0 V through an electrocatalytic 

reaction producing lOg". The multi-step potential waveforms applied for 

flow injection detection are listed in Table VI-1. The resultant flow 

injection peaks for single (dc) and multi-step amperometry are illus­

trated in Figure VI-12. Each case will be discussed briefly. 

Table VT-l. Multi-step potential waveforms utilized for the 
amperometric detection of I" at a Pt electrode 

Waveform Ej (mV); tj (ms) Eg (mV); tg (ms) E3 (mV); t^ (ms) 

A 700; 100 1300; 200 200; 150 

B 600; 100 1300; 200 200; 150 

C 1150; 100 200; 150 none 

D 1150; 100 1300; 200 200; 150 

Constant potential amperometry can be employed for the detection 

of I" by observing the mass-transport limited signal produced by the 

reaction I"—^ + e~ in the region 0.55 V < E < 0.95 V without 

interference from surface oxide (Figure VI-12a). The electrode is 

pretreated by injecting a highly concentrated plug of I" which 

establishes the maximum equilibrium coverage by I on the electrode 

surface. The equilibrium condition persists even for the absence of 

"I" in the electrolytic solution provided the potential does not exceed 

1.0 V. Hence, reproducible anodic peaks were obtained upon subsequent 

injection of I~ into the I~-free carrier stream. If the maximum 
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Figure VI-12: Flow injection peaks for 100 uM I' in 0.5 M HgSO^ 

at a Pt wire electrode 

Flow rate: 1.1 ml/min 

Sample volume: 50 wl 

Constant potential amperometry 

a. E = 700 mV 

Triple-step potential amperometry 

b. waveform A 

c. waveform C 

d. waveform D 
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equilibrium coverage does not exist on the surface, I" will preferen­

tially adsorb on the electrode surface resulting in irreproducible 

anodic peaks. 

Because adsorbed ions suppress the formation of surface oxide on 

Pt, I~ can be detected indirectly on the basis of the suppressed oxide 

current utilizing waveforms A and B. This mode of detection is employed 

successfully for flow injection detection if all adsorbed I from one 

detection cycle is removed prior to the next detection cycle. The 

following processes occur sequentially during a single application of 

the waveform: 1) I is oxidatively desorbed (Eg = 1300 mV) and surface 

oxide is formed; 2) the resulting surface oxide is cathodically reduced 

at Eg = 200 mV and I" is adsorbed from the solution; and 3) the current 

sampled at E^ = 600 mV or 700 mV is less than the background signal for 

the absence of I' in solution since adsorbed I suppresses the formation 

of surface oxide. Although the background signal for E^ = 600 mV 

(waveform B) was slightly lower than for = 700 mV (waveform A), the 

height of the detection peak observed upon application of waveform A v/as 

approximately 3 times larger than the height of the detection peak 

observed upon application of waveform B. Hence, waveform A was 

preferred (Figure VI-12b). 

Direct anodic detection of I~ can be accomplished by measuring the 

current produced as a result of the oxidative desorption of I (waveforms 

-C and D). Although a limiting current value was not attained for the 

production of lOg", substantially increased sensitivity was observed. 

Application of a double-step potential waveform (C) resulted in 
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broadening of the detection peaks due to carry-over of adsorbed I from 

the previous detection cycle. Addition of a potential step for 

oxidative cleaning minimized peak broadening; however, sensitivity 

decreased. A larger quantity of oxide is formed during anodic cleaning 

which requires a larger cathodic current to reduce the surface oxide, 

thus, a longer time is required for the potentiostat to overcome the 

uncompensated value of As a result, a shorter effective time 

period in which the adsorption of I" occurs and a decrease in 

sensitivity was observed. As the adsorption time for both waveforms 

(C and D) were increased, the analytical response became equivalent for 

the two waveforms (Figures VI-12c and VI-12d). 

Examination of the relationship between the time spent at the 

adsorption potential and the height of the detection peak should provide 

information about the adsorption isotherm. Increased peak height should 

be observed with increasing adsorption time (t^yg, where t^y^ = tg for 

waveforms A and D and t^y^ = tg for waveform C) until equilibrium 

coverage is attained. Plots of peak height vs. t^j^, for waveforms A, 

C, and D, are shown in Figure VI-13. Equilibrium coverage by I was not 

attained for t^j^ - 500 ms. An estimate of exposure time (T) required 

for maximum coverage to occur, assuming transport-limited adsorption 

for t < T, was calculated in the following manner: 1) Flux (F^) is 

defined as F^ = I^^^^nF = A(D/6)C^. In this case, A = 0.050 cnf, 

-D = 5.95 X 10"^ cnf/s, S = 3.8 X 10"^ cm, and = 1.0 X 10"? mol/cm^; 

therefore, F^ = 9.1 X 10~^^ mol/s. 2) The value of for I" on Pt 

is 1 X 10"^ mol/cm^ (16). 3) The exposure time (T) is given by 
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Figure VI-13: Peak height vs. t^j^ for triple-step amperometric 

detection of 100 yM I" in 0.5 M HgSO^ at a Pt wire 

electrode 

Flow rate: 1.1 ml/min 

Sample volume: 50 yl 

a. waveform A 

b. waveform C 

c. waveform D 
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T = hence, t = 0.7 s. Additional data was collected to test 

this prediction; however, the observed value of t^y^ was on the order 

of 10 s before maximum peak height was attained. Since these experiments 

were completed, it has been determined that all Pt oxide is not reduced 

under the conditions of these experiments = 200 mV, t^^^ - 500 ms). 

Therefore, these results are not valid for the determination of 

adsorption isotherm parameters. Nevertheless, the data are useful in 

predicting conditions for maximum sensitivity vs. efficiency for the 

pulsed detection technique. Experiments which utilize a four-step 

potential waveform are currently in progress.^ The processes occurring 

during the sequence of potential steps are as follows: 1) adsorbed I 

is oxidatively desorbed at E = 1300 mV; 2) the potential is stepped into 

the region of Hg evolution (E < -0.2 V) which facilitates reduction of 

the surface oxide and no I" is adsorbed; 3) I" is adsorbed at E = 200 mV 

for various lengths of time (50-500 ms); and 4) current is sampled at 

E = 600 mV. A four-step potential waveform increases the sensitivity 

of the measured signal since more I" adsorbs on the surface for shorter 

adsorption times and increases the reliability of adsorption isotherm 

data. 

^ Polta, J. A., unpublished results, Iowa State University, 1984. 
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VII. THE REDUCTION OF lODATE 

A. Introduction 

Based on the results obtained for the oxidation of I" to lOg" at a 

Pt electrode, it was concluded that the formation of lOg" is catalyzed 

by the initial stage of Pt oxide formation , PtOH) but is inhibited 

by the more stable form of Pt oxide (PtO). Numerous reactions, , 

the evolution of Og (54) and the reduction of Ce^^ (176, 177) at Pt 

electrodes, are inhibited by PtO. In sharp contrast, the reduction of 

Og (178), (178), HgOg (75), and lOg" (179, 180) occur more readily 

at an oxidized Pt electrode than at a reduced Pt electrode. Therefore, 

the cathodic behavior of lO^" at a Pt electrode was investigated by 

application of CV and QHMV to evaluate further the effect that Pt oxide 

exhibits on the reduction of lOg". 

The electroreduction of lOj" has been studied by chronopotentio-

metric and voltammetric techniques (179, 180). Anson (179) observed 

that the reduction of lOg" at an oxidized Pt surface occurred at 

potentials from 200-600 mV more positive than the potential at which 

the reduction of 10^" occurred at a reduced Pt electrode. The decrease 

in n was attributed to catalysis of the cathodic reduction of lO^" when 

accompanied by the reduction of the oxide layer. A decrease in cathodic 

current owing to the reduction of lOg" was observed as the "catalyzing" 

-oxide layer was removed from the electrode surface by reduction. Once 

the removal of the oxide layer was complete, no cathodic current was 

observed for 10^" until n was sufficiently large to cause the reduction 
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of lOj" to occur at the reduced Pt electrode. The rate of current decay 

increased as the potential was maintained at successively more negative 

values. In contrast, no decrease in current with time was observed for 

reactions such as Fe^* or Ig reduction which are not influenced by the 

oxide. Anson also observed that the peak for lO^" reduction shifted 

with changes in pH in accordance with that observed for the reduction of 

Pt oxide. Based on these observations, Anson concluded that the oxide 

layer is essential for the reduction of lO^" to proceed at n < 750 mV. 

Davis (180) also concluded that the reduction of lOg" is facilitated by 

the simultaneous reduction of Pt oxide. Current densities, measured at 

0.45 V vs. SCE, increased as became more positive. Davis also 

observed an abrupt change in the term na(n is the number of electrons 

and a is the transfer coefficient which is a measure of the symmetry of 

the reaction energy barrier) when the electrode had been reduced at 

E < 0.25 V. Therefore, he concluded that the reduction of lOg" occurs 

via a different mechanism on a reduced Pt surface than on an oxidized Pt 

surface. 

The anodic formation and cathodic dissolution of Pt oxide, in the 

absence of electroactive species, has been investigated (50, 52, 178). 

The results of those studies will be summarized briefly. The early 

stage of oxide formation, i^.e^., the formation of PtOH with minimal place 

exchange (Gg^ < 0.15), is electrochemically reversible. However, as 

-becomes more positive, the formation of a more stable oxide layer occurs 

as a result of place exchange between Pt and OH and, subsequently, 

further oxidation to PtO. Hence, the oxide formed at more positive 
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potentials is increasingly more irreversible and reduction occurs at 

more negative electrode potentials (Figure VII-1). 

The mechanism of Pt oxide reduction is dependent upon the form of 

oxide. If the potential scan is reversed prior to the formation of PtO, 

the reductive process occurs according to the scheme (52) 

OHPt > PtOH 

PtOH + H+ + e" ^Pt + HgO 

where place exchange is the rate determining step. The rate of the 

second step increases with increasingly negative values of potential. 

The reduction of PtO proceeds by the mechanism (52) 

PtO + + e" >PtOH 

PtOH + + e" ^ Pt + HgO 

where the formation of PtOH is the rate determining step. In either 

case, the existence of PtOH during the reduction of Pt oxide is only 

transient. Hence, PtOH is, perhaps, responsible for catalyzing 

cathodic reactions, as well as catalyzing oxidative processes. 

B. Cyclic Voltammetry 

The I-E curve obtained for lO^" at a Pt electrode is shown in 

Figure VII-2. A cathodic wave (A), for the reduction of lOj" to I 

-at a reduced Pt surface, was observed in the region -0.2 V < E < 0.3 V 

during the positive scan of potential. Iodide ions generated by this 

reduction reaction are adsorbed on the Pt surface and inhibit formation 
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Figure VII-1: I-E curves of Pt in 0.5 M HgSO^ as a function of 

Electrode rotation speed (W): 100 rpm 

Potential scan rate (*): 4 V/min 
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Figure VII-2: I-E curve of 4 X 10"^ M IO3" in 0.5 M HgSO^ 

at a Pt RDE 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (*): 6 V/min 
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of PtOH during the subsequent positive scan of potential; therefore, 

only double layer charging current is observed in the region 0.3 V < 

E < 0.95 V. At E > 0.95 V, the anodic current increased rapidly and 

reached a maximum value at ca^. 1.23 V (B). Peak B is the combination 

of current produced as the result of oxidative desorption of I and the 

formation of the surface oxide. For the negative scan of potential, 

the cathodic wave C corresponds to the reduction of Pt oxide and some 

reduction of lOg". At E < 0.3 V, the cathodic wave A (already mentioned) 

was observed which corresponds to the reduction of lO^" to I" on a 

reduced Pt surface with concurrent adsorption of I. Adsorption of H 

atoms is inhibited by the presence of adsorbed I therefore, the charac­

teristic H adsorption and H desorption peaks are not observed. 

Current-potential curves were recorded as a function of * at a 

constant value of w. The reduction of lOy" to I" (wave A) at a reduced 

Pt electrode was independent of <|) which is characteristic of a mass-

transport controlled reaction. The height of peak 8, the simultaneous 

oxidation of adsorbed I and the Pt surface, varied with * which is the 

typical behavior observed for surface-controlled reactions. The height 

of peak C also varied with * due to the contribution to the total 

current from the reduction of Pt oxide, a surface-controlled reaction. 

Current-potential curves were recorded also as a function of w 

while holding (|) constant. Current resulting from the reduction of lOg 
^ 

"to I" at a reduced Pt electrode (wave A) increased linearly with 

i_.£., the reduction of lO^" is mass-transport limited at an overpotential 

of ca. 750 mV. Peak B, the combination of current due to surface oxide 
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formation and oxidative desorption of I, was independent of w as 

expected for surface-controlled processes. The height of peak C 

increased nonlinearly with w ̂  indicating that a surface-controlled 

reaction, i_.e^., oxide reduction, is occurring simultaneously with the 

transport-coupled reduction of lOg". 

Current-potential curves recorded as a function of are shown 

in Figure VII-3. For ^ 1.0 V, only the cathodic wave A was observed 

which corresponds to the reduction of 10^" at the reduced Pt electrode. 

The formation of Pt oxide is inhibited by adsorbed I produced during 

reduction of lOg" to I". Hence, no oxide formation occurs until E > 

1.0 V. As E, was made more positive than 1.0 V the height of peak C, 

obtained only for E^ > 1.0 V, increased. The increase in current is 

attributed to the greater quantity of oxide which is formed at more 

positive values of E^. No conclusion can be made from these data as 

to whether the amount of ID," reduction increased as E, was made more 
V a 

positive and the quantity of oxide available to catalyze the reaction 

increased. Therefore, the mass-transport coupled faradaic signal owing 

to the reduction of lO^" was examined also as a function of E^ by 

application of QHMV. These results will be discussed in the next 

section. 

The reduction of lO^" was investigated further utilizing a RRDE 

with a Pt disk and Pt ring. The processes occurring at the disk and 

the ring electrodes are considered here in general terms for a reversible 

reaction before discussing results specific to lOg". Solution flows 

axially to the disk of a RRDE then flows radially across the ring 
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Figure VII-3: I-E curves of 4 X 10"^ M IO3" in 0.5 M HgSO^ at a Pt RDE 

Pt RDE as a function of E^ 
a 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (4^: 6 V/min 

1.0 V 

— . — 1.1 V 

1.2 V 

1.3 V 
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electrode. Hence, the electrochemical production or consumption of an 

electroactive analyte at the disk can be monitored indirectly by 

observation of changes in the ring current. The ring electrode potential 

(Ep) usually is maintained at a constant value, while the potential of 

the disk electrode (E^) is scanned between the anodic and cathodic 

limits. The current produced at the ring electrode (I^) is recorded as 

a function of E^. 

The theoretical consideration of shielding and collection experi­

ments has been described (1, 141, 142). The qualitative results will 

be discussed briefly. The so-called shielding experiment will be 

considered first. Suppose that the bulk solution contains an oxidized 

species (Ox), which can be reduced at E < E°ox/Red' the bulk 

concentration of the reduced species (Red) is zero. The potential of 

the ring electrode is maintained at E^ = E^ where E^ is on the limiting 

current plateau for the reaction Ox + ne~—> Red, i_.£., the concentration 

of Ox at the electrode surface is zero. At Ey > E°ox/Red' reaction 

occurs at the disk electrode and remains at a constant value 

corresponding to the transport-limited value for reduction of Ox at the 

ring electrode (Figure VII-4, region A); the ring is said to be 

"deshielded". However, when E^ < E°ox/Red' ^x species transported 

to the disk electrode are reduced; thus, the flux of Ox to the ring 

electrode decreases and the observed decreases (Figure VII-4, region 

-B); the ring electrode is said to be "shielded" by the disk electrode. 

For the so-called collection experiment, a value corresponding to 

the limiting current plateau for the reaction Red—>0x + ne", i..e^., the 
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Figure VI1-4: Theoretical I^-Ej and I^-Ej behavior 

Shielding experiment 

Ey. = Eg where the concentration of Ox at the 

electrode surface is zero 
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surface concentration of Red is zero. At < E ox/Red' reaction 

occurs at the disk electrode and is zero (Figure VII-5, region A). 

However, at E^ > E Qx/Red' species are generated at the disk 

electrode and transported radially over the ring electrode. Oxidation 

of Red occurs at the ring producing an anodic (Figure VII-5, region 

B). 

The cathodic behavior of lO^" was characterized at a RRDE with a 

Pt disk and Pt ring by application of a shielding experiment. Therefore, 

the reduction of 10^" at the disk electrode was reflected by a decrease 

in the cathodic value of I^. The ring electrode was potentiostated at 

E^ = -0.1 V, at which the mass-transport limited reduction of 10^" 

occurs (see Figure VII-2). The resultant I^-Ey curve is shown in Figure 

VII-6. During the positive scan of E^, increased steadily over the 

region 0.0 V < E^ < 0.3 V as current produced by lO^" reduction at the 

reduced Pt surface decreased from the mass-transport limited value. 

The value of was constant in the region 0.3 V < E^ < 1.03 V 

indicating that lOg" was not undergoing reaction at the disk electrode 

which was free of oxide at E^ < 1.03 V during the positive scan of 

potential. At E^ > 1.03 V, the cathodic value of increased due to 

the oxidative desorption of I occurring at the disk electrode to 

produce additional 10^" which was transported radially to the ring 

electrode. At E^ > 1.25 V, lO^" was no longer produced at the disk 

-electrode; therefore, returned to the value observed in the region 

0.3 V < Ej < 1.03 V. During the negative scan of E^, was constant 

over the region 1.3 V > E^ > 0.85 V. However, at E^ < 0.85 V, 
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Figure VII-5: Theoretical I^-Ej and behavior 

Collection experiment 

where the concentration of Red at the 

electrode surface is zero 
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Figure VII-6 Ip-Ej curve of 4 X 10"^ M IO3" in 0.5 M HgSO^ 

at a Pt/Pt RRDE 

Electrode rotation speed (W): 1000 rpm 

Potential scan rate (4.): 6 V/min 

Ey. = -0.1 V 



www.manaraa.com

T 1 1 1 r 

-I I I I I I 
1.4 1.0 0.6 

Ey (V vs. SCE) 

I r 

20 

IrUA) 

-20 

0.2 -0.2 



www.manaraa.com

167 

decreased. This observed decrease in is attributed to the reduction 

of lOg" at the disk electrode which causes a decrease in the amount of 

lOg" transported to the ring electrode, i_.^., the ring electrode is 

"shielded" by the disk electrode. The value of decreased to a 

minimum value at ça. = 0.43 V, then increased as the reduction of 

lOg" at the disk electrode diminished. The decrease in lO^' consumption 

at the disk electrode was due to the depletion of the catalytically 

active oxide layer which was removed from the electrode surface by 

electro-reduction. The ring electrode was no longer shielded by the 

disk electrode. At Ey < 0.1 V, a decrease in was observed as lOg" 

was reduced at the oxide free Pt surface. 

The results obtained by potentiodynamic experiments just described 

are in support of the conclusion that catalysis of the reduction of lO^" 

occurs at an oxidized Pt surface, presumably by PtOH, generated during 

reduction of the oxide. In review: 1) no cathodic peak is observed for 

the reduction of lO^" at a reduced Pt electrode until n > 750 mV; and 

2) the mass-transport coupled reduction of lO^" is observed simultane­

ously with Pt oxide reduction in the region 0.85 V > > 0.15 V (peak 

C). 

C. Square-Wave Hydrodynamically Modulated Voltammetry 

QHMV, utilizing the staircase potential waveform, was applied to 

'isolate the mass-transport coupled component of current due to the 

reduction of lOg" from the current produced simultaneously for reduction 

of Pt oxide. The AI-E curve is shown in Figure VII-7. During the 
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Figure VII-7: AL-E curve of 4 X 10"® M IO3" in 0.5 M h^SO^ 
at a Pt RDE 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (ty): 150 ms 

Number of data points (N): 10 
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positive scan of potential, a cathodic wave (A) was observed at E < 0.2 V 

resulting from the mass-transport limited reduction of lO^" at a reduced 

Pt surface. No aI was observed throughout the remainder of the positive 

scan of potential. During the negative scan of potential, al was zero 

until E < 0.7 V. Peak B is attributed to the mass-transport coupled 

reduction of lO^" occurring simultaneously with the surface-controlled 

cathodic reduction of Pt oxide. The reduction of lOg" ceased when Pt 

oxide reduction was complete (E = ça. 0.3 V). The mass-transport 

controlled reaction of 10^" at a reduced Pt electrode was observed at 

E < 0.2 V (wave A). A series of al-E curves was recorded as a function 

of E. (Figure VII-8) to determine if the quantity of oxide formed on the 

electrode surface exhibited any effect on the quantity of lO^" that can 

be reduced in the region of peak B. The height of peak B decreased as 

the potential scan was reversed at successively less positive values of 

potential; hence, the quantity of oxide present does effect the amount 

of lOg" that is reduced at an oxidized Pt electrode. The formation of 

Pt oxide is inhibited in the presence of adsorbed I therefore, no oxide 

formation occurs until E, > 1.0 V. The al-E curve recorded for E_ = 1.0 a a 

V contained no peak B which demonstrates that Pt oxide is essential for 

the reduction of lO^" at n < 750 mV in the region of peak B. The 

transport-controlled reduction of lO^" at a reduced Pt electrode (A) 

was not altered by changes in E^. 



www.manaraa.com

Figure VII-8: AI-E curves of 4 X 10"^ M lO^" in 0.5 M HgSO^ at a 
Pt RDE as a function of E, 

Lower rotation speed (W^): 1000 rpm 

Upper rotation speed (W^): 4000 rpm 

Potential step increment (AE): 5 mV 

Time delay (t^): 150 ms 

Number of data points (N): 10 
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VIII. CONCLUSIONS 

The purpose of this research was to develop the software necessary 

for modulated hydrodynamic voltammetric techniques and to evaluate their 

application to the study of surface-catalyzed reactions. QHMV permits 

extraction of the convective-coupled faradaic current from the total 

electrode current. Application of QHMV allows one to investigate the 

effect that the potential-dependent surface state has on reactions which 

are coupled to the mass-transport of the analyte from the bulk solution. 

Of major significance is the ability to observe mass-transport coupled 

reactions occurring at an electrode, covered by an inhibiting oxide 

layer, which are catalyzed by the anodic evolution of Og. 

A survey of anodic reactions utilizing CV and QHMV demonstrated the 

complementary nature of the two techniques and illustrated that QHMV is 

an invaluable technique for the study.of mass-transport coupled reactions 

that are occurring simultaneously with surface oxidation and Og evolution. 

It was a general observation that many of the reactions studied were 

kinetically inhibited, j_.£., electrochemically irreversible, at metal 

surfaces without the oxide layer; however, in the process of forming the 

oxide, the overall rate of the reaction increased significantly, i-e^., 

electrocatalysis of the reaction occurred. It was also observed that 

those reactions which involve the uptake of an O-atom derived the most 

electrocatalytic benefit from the oxide layer and the evolution of Og. 

The oxidative reactions of I" in acidic media at a Pt electrode 

were examined in detail. The convective components of the total 

electrode current include: 1) the mass-transport limited formation of 
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Ig at E > 0.45 V; 2) the mass-transport coupled oxidation of I" to lOg", 

which is catalyzed by the anodic formation of PtOH; and 3) the mass-

transport limited production of lOg", which is concluded to be electro-

catalyzed by OH, an intermediate product of Og evolution. Observation 

of the latter two components was possible only upon application of QHMV. 

The catalytic reduction of 10^' at a Pt electrode was demonstrated also 

utilizing QHMV. 

The anodic detection of I' was investigated by constant and multi-

step potential amperometry. Iodide was detected by measuring the current 

resulting from: 1) the mass-transport limited production of Ig from I", 

2) the suppression of the anodic formation of Pt oxide, and 3) the 

electrocatalyzed oxidation of I" to lOg". Enhanced sensitivity of the 

measured signal was observed in the potential region where the electro-

catalyzed oxidation of I" to lO^" occurs. 
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IX. FUTURE RESEARCH 

This research project has made possible the study of mass-transport 

coupled reactions occurring simultaneously with surface oxidation and Og 

evolution. Countless analyte/electrode combinations remain to be 

examined. Organic as well as inorganic reactants should be studied. 

Reactions occurring at metal electrodes with ad-atoms, e.£., Ru ad-atoms 

on Pt; metal-oxide electrodes, £.3.., PbOg and RuOg/TiOg; and metal alloys 

should be investigated. By observing the behavior of the mass-transport 

coupled current, reactions and their mechanisms may be understood more 

completely. Also, properties of the electrode material and the oxide 

layers which form on the electrode surface may be elucidated further by 

the application of QHMV since the behavior of the mass-transport coupled 

current reflects changes occurring on the electrode surface, £•£., 

changes in the catalytic properties or changes in the conductance 

properties. 

The development of computer-controlled QHMV should continue by 

investigating the possibility that the positive potential limit may be 

extended even further and could be limited, ultimately, only by 

dissolution of the electrode material. This can be accomplished by 

increasing the potential range of the A/D converter and reducing the 

noise, both of which are limiting factors in the present system. 
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XII. APPENDIX 

This appendix contains printouts of the computer programs for: 

1) QHMV utilizing a staircase potential waveform, 2) QHMV utilizing a 

triple-step potential waveform, and 3) the collection of data for 

AL vs. tg plots to examine the time dependence for conversion of active 

PtOH to the inactive OHPt and PtO. 
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10 REM SqUAFE-WE MZULATICN VCLEAftEIBY 
15 REM 11 I'll I i3Wm.BASi 1 9/17/82 
20 REM SET D/A dUVEKIHS TO ZERO 
XHB=128:IP=0 
40 PCKE(HEX(''O008")),IP:P0KE(HEX('KlX)9")),HP 
50 iaŒ:(HEX('tECA")),LP:PCKE(HEX('mB")),HP 
60 KXE(HEX('rar*)),IP:KKE(HB[Cmsy')),HP 
70 PCKEXHEX('ttXE:')),IP:PCKE(HBC('X3XF')).HP 
75 REM Dm SICRAGE MfflKECES 
80 DDI £(1150) :DIM DI(1150) 
90 REM FRM CHANNEL ASSIOWENIS 
100 PRDfT "D/A CHANNEL ASSIQWENIS" 
110 PRINT " A POmiAL CUIHJr TO SDEHCR" 
120 PRINT " B POmniAL TO ESTAT CR ANAliDG SCALING EEVICE" 
130 RdNT " C CURRENT OJIHJT TO RECCRTER" 
140 FRmr " D—PomiAL onFur TO REHREER" 
150 FRINT:PRINT "A/t) CHANNEL ASSIQWENIS" 
160 PRINT " 0 CURRENT INPUT FRCM POnNnOGTAT' 
170 PRINT " 1 POmiAL PRCM ESTAT CR ANALOG lEVICE" 
180 PRINTzPRINT 
200 REM EXPSOMENEAL CCNDinCNS 

210 INRJT "VCLEAGE EOR IDW AND HIŒ RCfTATECK SPEHB (1000 Rm/V)",WL,WH 
220 INPUT "CAraDIC AND ANCDIC LIMTES (V)",EC,EA 
230 INPUT "POIBIIAL INCREMENr',n 
240 INPUT 'TIME MAY (>SEC); NOT LESS THAN 100 ÏCEC",1D 
250 INPUT "NIMBER CF DA3A PCŒNIS 011ECTED",N 
255 REM GCMPENSAnCN RK ANALOG SCALING lEVICE 
260 INRJT "ENTER 'Y' IF ANCL3G SCALING imCE IS BEING USED",SD$ 
270 IF SD$='Y' urn 275 aSE 300 
275 INPUT "ENIER TEAMP VAIIE'MV 
280 EA(=EA/DV:B&fi:/DV;EI=S;/DV 
2821D=ID-100 
290 REM SET MQIAL OMmCKS 
300 Q :̂U=1;Y=0 
310 REM SET low ROTAHCN SEEED 
320 UKWLflO)*12.8:H=INT(W);L=0«I)=»256 
330 PCKE(HEX("0006")),L:PCKE(HEX('Xn)9")),H 
340 IF U=1 THEN 470 
400 REM AVERAGE HIGH CURRENT VALUES 
410 IH=I/N:I&:W1000:m=INT(IH) :IH=IH/1000 
420 DI=m-IL:DIW)I»1000:DI=INT(DI) :DI(U-1H)I/1000 
425 IRINT U-1;E(U-1),IL,IH,DI(U-1) 
430 REM CSLCULAIE AND TEST NEW POTENTIAL VALUE 
440(>Q»E[ 
450 IF ($>EA THEN 770 
460 ff Q<EC THEN 800 
470 REM SET PODENTIAL 
480 E<QflO)*12.8:H=INT(E):L=(E-H)*256 
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485 FRINTQ, 
490 PCKE(HEX('M")),L;PCKE(HEX('mB")).H 
500 REM ŒHX AND SICRE PCfUNTIAL VALUE 
510 Z=9:PCKE(HEX('%003")),Z 
520 IW!EEK(HEX('m]5")):WQK(HE[Cm)4")) 
530 H=H-128:L=(mr(iyi6))/16:E=(m)*320/4096 
532 IF rv=0 THEN 538 ELSE 534 
534 saw 
538E(U>̂  
540 REM TIME EELAY BETCRE MEASURING CURRENT 
550 PGR T=1 TO IDrNEXT T 
600 REM SA f̂fLE CURRENT 
6101=0 
620 ECR 0=1 TO N 
630 Z=8:PCKE(HEX('V]Q03")),Z 
640 H=f!EEK(HEX("CGQ5")):Iĵ ïïK(HEX('m)i")) 
650 H=H-128:L=(INT(IYI6))/16:N=(»»L)*320/4096 
660 i=i+n 
670NEA'C 
690 REM CHEOC VAUE (F ROMICN SHED 
700 IF Y=1 THEN U=lh.l;Y=0:Q0ID 310 
710 REM SET HLOI RDEiOICN SPEED 
720 W=0«flO)*12.8:H=INT(W);L<W4i)*256 
730 PCKE(HEX('m]6")),L;HXE(HEX('m»")).H 
740 Ib=lA:IL=IL*lCOO:IL=INT(IL):IUIiyiaX) 
750 Y=1:Q0ID 540 
770 REM REVERSE SCAN DIKBCHCN 
780 Er=<m:(>QK2iîI);GCII0 470 
800 REM SET RDEftHCN SPEED TO ZERO 
810 H=128:L?0:PCKE(HEX('\I]08")),L;PCKE(HEX('M»")),H 
820 3HJ-1 
825 REM HJDT DIOA 
830 ECTT "Dm fTTirrm), ENISI 'Y' TO HJOT DHA",DC$ 
840 IF DC$='Y' THEN 860 EISE INPUT "ARE YOJ SURE?',DC$ 
850 IF 1X3='V THEN 2000 EISE 830 
860 FDR IFCL TO X 
870 &£(U):E=(Ek-10)*12.8:H=INr(E):L=(E^)*256 
880 KKE(HE!CC\n3E:')),L;PCKE(HEX('mi")).H 
890 I=̂ I(U):I=(I+10)*12.8;ft=INT(I):L=(I-H)*256 
900 PCKE(HEXCmrf')).L:PCKE(HEX("aX}D^')).H 
910 NEXT U 
920 MVr "RECHEEX Dm (Y OR N)",P$:IF P$='V' THEN 860 
930 INPUT "REPEAT ESERIMENT WTIH SAME OaJDinCNS",P$ 
940 IF P$="Y" THEN 950 ELSE 970 
950 EI=0-E[:Q0ID 300 
970 INRJT "REPEAT EXPOOMENT WITH EEFFERENT GCNDinCNS",P$ 
980 IF P$='Y' THEN 990 ELSE 2000 
990 DV=0:QCIID 200 
2000 END 



www.manaraa.com

190 

10 RBi SQUARE WAVE TRm£ HJLSE 
15 REi i i i ! " i i ! ! ! ! i ! ! ! i ! 11/20/83 
20 REM SET D/A CONVERTERS ID ZERO 
30 0=128:1̂ 0 
40 PCKE (HE!(('t)008")),L:PQKE(HEX('mB")),H 
50 PCKE(HEX('m)A")),L;PCKE(HBC('y3XB")),H 
60 PCKE(HEX('ttxr')),L;PCEE(HEX('™')).H 
70 PCKE(HEXCmE")),L:PCKE(HEX("OOCF')),H 
75 REM LtST CHANNEL ASSIQMMS 
80 RONT "D/A CHANNEL ASSIOWENIS" 
90 PRINT "A PCHENTIAL CUIHJT ÎD ROEAKR" 
100 PRINT "B POŒNECAL ID ESTAI" 
110 PRINT "C CURRENT OJIPUT ID REEEREER" 
120 PRINT "D POKNIIAL CUIHJT ID REDCREEE" 
130 reiNTiPRINT "A/D CHANNEL ASSIOWENIS" 
140 HONT "0 CURRENT INPUT FRQi ESTAT' 
150 PRINT "1 POTENTIAL RŒ ESTAT' 
160 PRINTiHONT 
200 REM DEFINE DAIA SIC8AGE MflSICES 
210 DIM E(200);DIM I(2Û0):DIM n(2) 
300 REM lEFINE VARIABLE EXPERIMENTAL OONDIUCNS 
310 INPUT "I£W AND HIGH RŒMICN SPEHJS (1000 RE?VV)",m,Hv 
315 FPJNT "ENIM PQŒNIIAL VALUES IN VOUS, TIME TELAXS IN >GBC" 
320 INPUT "E(RED),E(Œ)",E1,E2 
330 INPUT "E(SAMEI£,EIinAL),E(SAMFIZ,EINAL),E(SAMEI£,SrEP)",E3,E4,E5 
340 INPUT "TIME EELAÏS AT EACH POTENTIAL RESPECnVELï",TA.TB,IC 
350 INPUT "NIWBER CF DATA POimS GdUCrH) AT EACH PaiENE[AL",NN 
360 X=0;Y=l:EAr£3 
400 REM SET mv ROEAnCN SPEED 
410 VKIWt-10)*12.8:H=INr(W):L=(l«I)*256 
420 PCICE(HEX('mB")),L:PCKE(HEX('tt]09")),H 
425 X=X+1 
430 Rm SET REIUCING POIBOIAL 
440 EKE1+10)*12.8;H=INT(E):IKM)*256 
450 PCKE(HEX("OOQA")),L;PCKE(HEX('KI](B")),H 
460 FDR T=1 ID XAiNEXT T 
470 REM SET OXIDIZING POIENTIAL 
430 E=(E2+10)*12.8:H=INT(E):IK&H)*256 
490 PCKE(HEX("OOQA")),L:PCKE(HEX('ttXB")),H 
500 KRT=1 ID "JErNEXT T 
510 REM SET SAMPLING POTENTIAL 
520 EKEAflO)*12.8;ft=INT(E):L=(&fi)*256 
530 PCKE(HEX('QI1A")),L:PCKE(HEX("00QB")),H 
540 FDR T=1 ID ICiNEXT T 
630 REM SAMPIE CURRENT 
6401=0 
650 FCR XX=1 ID NN 
660 Z=8;PCICE(HEX('t003")),Z 
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670 tt̂ EK(HEX("0005")):bfEEK(HEX("aX>i")) 
680 iHÎ-128:L<INr(iyi6))/16:n=(H4L)*320/4096 
690 i=i+n 
700 NEXT XX 
710 I=I/l®f:I=I*1000:I=INr(I):I=I/1000 
720 n(Y)=I 
730 PMR n(Y), 
732 REM ŒHX POIENIIAL VALUE AND SICRE 
733 E&0 
734 KR m=l ID 10 
735 Z=9;PCKE(HEX('VIX}3")),Z 
736 IHîHC(HEX("OOQ5"));L=PEEK(HEX("aX)4")) 
737 IfcH-128:L=(INT(Vl6))/16:E=(HtL)=̂ 20/4096 
738 EE=EjîE;NEXT HH 
739 E(X)=EE/10 
m PEENT E(X) 
750 REM TEST ROimCN SPEED 
760 IF Y=1 IHEN 770 
762 IF Y=2 THEN 790 
770 Y=2;W=(Ht#10)*12.8;H=]Nr(W):L=0M)*256 
772 PCKE(HEX("aX]6")),L;PCKE(HBCCra»")),H 
774 0010 430 
790 REM CMUMIE DittlKtNCE CURRENT AND SICRE IN 
792 I(X)=n(2)-n(l) 
794 Y=1 
800 REM rATniTATR NEW POTENTIAL VALUE 
810EA=EW5 
820 IF EA>E4 THEN 900 ELSE 400 
900 REM SET imnm SPEH) AND POŒNriAL 10 ZESO 
910 Ife:128:L»0 
920 PCKE(HEX('̂ ")),L;PCKE(HEX('m»")),H 
930 PCKE(HEX('raiA")),L:PCKE(HEXCmBf')),H 
1000 INPUT "PU3T Dm",PD$ 
1010 IF H3$='Y' IHEN 1020 ELSE 1980 
1011 PRINT "Dm IS HÛTIH) POINT BY POMT' 
1012 HONT "ELECIRIC ÎÏNLIFT IS NOT GCNIRCIIED IN THIS HUTTING ROUTINE" 
1015 REM SET REDCREER TO INITIAL POTENTIAL, ZERO CURRENT 
1020 PRINT "SET RBOCRDER TO INITIAL POEENTEAL, ZERO CURRENT' 
1030 HffeE3:ZX=(Hîfl0)*12,8;iî=INT(ZX):L=(ZX-H)*256 
1040 PCKE(HEX('mE')),L;PCKE(HEX("GOQF")),H 
1%5 K=128:W) 
1050 PCKE(HEX('raOC")),L;PCKE(HE!C('m}D'')),H 
1060 INPUT "Dm TO RErnaM",i»$ 
1070 IF ER$='Y' IHEN 1100 EISE 1980 
1100 FDR M=1 ID X 
1110 E=EO'0:E=(EflO)*12.8:ft=INT(E):L=(E-H)=̂  
1120 POKE(IŒXCmE")),L:PCKE(HEX("QOQF")),H 
1130 I=I(M) :I=(I+10)*12.8:H=INT(I) :L=(I-H)*256 
1140 PCKE(HEX("COOCr')).L;PCKE(HEX("aXXy')),H 
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1150 HE SS=1 TO 500;NEXr SS 
1200 HE CE=1 TO 400:NEn' OC 
1210 NEXT M 
1300 mur "REOŒOC Dm",RD$ 
1310 IF ED$='Y' HŒN 1020 ELSE 1800 
1800 INPUT "REPEAT EXEESEdENT WUH SAME 03n3niCNS",SC$ 
1810 IF SC$="Y" THEN 360 ELSE 1820 
1820 IMJT "REPEAT EXPERDENT WIIH DHîHŒNT 0CNDIIICÎB",DC$ 
1830 IF EC$=*Y' THEN 310 EISE 2000 
1980 IMUr'ARE YOU SURE:',R$ 
1985 IF R5="N" THEN 1000 HSE 1800 
2000 END 
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10 RBi )•! > 8 ! qpULSr.BAS**i ' I M'l'i'Ci "I: »**»w=l/20/83 
20 REM SET D/A OCNVERTERS TD ZERO 
XH=128:L=0 
40 PCKE (HEX('mB")),L;PCKE(HEX("0009")),H 
50 KKE(HEX("DOQA")),L:POKE(HEX('raB")),H 
60 PCKE(HEX('ttXl7')),L:HKE(HEX("(my')).H 
70 PCKE(HEX('tt)CE")),L:KKE(HEX('mî")),H 
80 FRINT "D/A CHANNEL ASSIQWENIS" 
90 H£INr "A PCHENIIAL OUmJT TO EDEAIŒ" 
100 MNT "B POmiAL TO ESTAT' 
110 PRINT CURRENT CUXFUT TO RHXREER" 
120 PRINT "D POŒNIIAL OUmJT TO REECRŒR" 
130 IRINT:PRINr "A/D CHANNEL ASSIOWENIS" 
140 HÎINT "0 CURRENT INPUT ERCM ESTAT' 
150 reiNT "1 POIENIIAL ERCI'l ESDO" 
160 PRINTiPRINr 
200 REM EEFUE MAIRIX 
210 MM E(200);D1M 1(200):DIM n(2) 
300 REM lEFINE VARIABLE EXPERIMENTAL ŒHDHICNS 
310 INPUT "LOW AND HIGH RDTAHCN SPEEDS (1000 RÏM/V)",m,Hs' 
315 Hour "ENTER R3ŒNIIAL VALUES AS mS, TIME IHAÏS AS fGEE" 
320 INPUT "E(RED),E(aX),E(SAMElE)",El,E3,E2 
330 INHJT "TIME tway AT REEUONG PaiHÎTEAL",IA 
340 INHJr "mniAL and final time EEIAYS AND SIBP",T1,T2,TS 
345 INPUT "TIME TELff BEFCRE SAMEUNG CURRENT'.TT 
350 INPUT "NUMBER CF DAIA PQINIS OUfCIH) AT EACH PŒŒNTIAL",® 
360 }W):Y=1:T&=T1 
400 REM SET I£W ROTAHCN SPffl) 
410 WKIWfl0)*12.8:B»INr(W):L=(l«l)*256 
420 PCKE(HEXC "̂)),L:PCKE(HK('m»")),H 
425 X=X+1 
430 REM SET REIOCING POTENTIAL 
440 E=<El+10)*12.8:H=INT(E):b=(E-H)*256 
450 PCKE(HEX('Gm")).L:PCKE(HEX('tOCB")),H 
460 ECR T=1 TO TAiNEXT T 
470 REM SET OXIDIZING POTENTIAL 
480 E=(E3fl0)*12.8;H=INT(E):b=(E )̂*256 
490 PCKE(HEX('m}A")),L:PCKE(HEX('VlX]ff')),H 
500 KR T=1 TO TCtNEXT T 
510 REM SET SAMPLING POIENTIAL 
520 &<E2+10)*12.8:H=INT(E):L=(M)*256 
530 PCKECHEX('m)A")),L:PCKE(HEXCmB")),H 
540 KR T=1 TO TT:NEXT T 
630 REM SAMPIE CURRENT 
6401=0 
650 EDR XX=1 TO NN 
660 Z=8:PCKE(HEX('mB")),Z 
670 H:fEBC(HEX("0005")) :WQK(HEX("CD04")) 
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680 H=«-128;b<INr(iyi6))/16;n=(H4L)=t520/̂  
690 i=i+n 
700 2ŒXrXX 
710 I=I/NN;I=I*1000:I=INr(I);I=I/10œ 
720 n(Y)=I 
730 PRINT n(Y), 
732 REM CHKX POIENHAL VAIIE AND SERE 
733 EEpO 
734 KR HH=1 TO 10 
735 Z=9:R3CE(HEX('mi3")),Z 
736 iy=!EH(HEX('mS")):b=PEHC(HEX('aX)4")) 
737 H=B-128;L=(INr(iyi6))/16;E=(H»L)=̂ /̂  

738 EEf̂ ME:NEXr HH 
739 E(X)=EE/10 
740 PRINT E(X) 
750 EEM TEST SCfEfllCN SPEED 
760 IF Y=1 IHEN 770 
762 IF Y=2 IHEN 790 
770 Y=2;WKH5frlO)*12.8:H=INr(W):L=(W-H)*256 
772 KKE(HEX('m]8")),L;PCKE(HEX("OOG9")),H 
774 GOTO 430 
790 KEM CALOJLAIE DHîîEEÎfCE CURRENT AND SIC8E IN MffiOK 
792 i(x)=n(2)-n(i) 

794 W 
800 REM rATniTATF. IDE HUff 
810 •IC=TCMS 
820 IF TC>T2 THEN 900 ELSE 400 
900 REM SET KDDOICN SPEED AND POUNIIAL ID ZERO 
910 H=128;W) 
920 KKE(HEXCl0008")),L;PCKE(HEX('m»")),H 
930 HKE(HEX("OQOA")),L;RXE(HEX(''OOQB")),H 
1000 Î iPEJT "PL3T DfflA",ED$ 
1010 IF PD '̂Y' THEN 1020 ESE 1980 
1020 PRINT "SET REXREER ID 7ES£f' 
1030 H=128:W) 
low PCKE(HEX('raE?')),L:PCKE(HEX("aXF')),H 
1045 H=128:W) 
1050 PCKE(HEX('«Xr')),L;PCXE(HEX("OOOD")),H 
1060 MUr "Dm TO RED3aER",DR$ 
1070 IF DR$='T THEN 1100 ELSE 1980 
1100 FCR M=1 TO X 
1110 &=TS^^W).004:E=(E^10)*12.8;ft=E^^(E);L<E-^^)*256 
1120 PCKE(HEXCraE')).L:PCKE(HEX("OOQE*')),H 
1130 I=I(M) :I=(I+10)*12.8;H=INT(I) :L=(I-H)*256 
1140 PCKE(HEXCQX]C")),L;PCKE(HEX("OOOff')).H 
1150 ÎŒ SS=1 ID 500:NEXT SS 
1160 REM KWER P0J 
1180 REM LIFT HN 
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12œ KR 0C=1 ID 400:NE%r Œ 
1210 NEJCTM 
1300 new "REHMX Dm",RD$ 
1310 IP RD$='Y' IHEN 1020 EISE 1800 
1800 INHJT "REmi EXEîEIMENT WTIH SA^E ailDniCtB",SC$ 
1810 IF SC$="Y" THEN 360 EISE 1820 
1820 EHJT "REPEAT EXFERIMENT WDH DXEîHŒNT CmDIIICNS",l]C$ 
1830 IF DC$="Y" IHEN 310 EISE 2000 
1980 INEUP'ARE YOJ SURET',R$ 
1985 IF R$="N" IHEN lOCO EISE 1800 
2000 END 
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